Welcome to the Machine: The Transhumanist God

Authorized Dreams Only Please!

Have you ever wondered if scientists could build a giant machine to solve all the world's problems? Or better yet, why not just become machines and get rid of people all together? Imagine it: no more worries, sickness, war, drug addiction, or poverty. We can solve the world's problems by simply getting rid of people. This sounds fantastic but is actually the goal of the new religion of Transhumanism, which wants to replace the human race with machines.

The wisest man once said there is nothing new under the sun (Ecc. 1:9). Despite all our modern innovation and progress, the age-old desire of mankind to become God remains the same. This new religion is steadily gaining ground, perfectly fit for our hyper technological twenty-first century. Transhumanism's beliefs are simple, but their implications will be revolutionary. They want to transcend our mortal bodies and create a super intelligent godlike human and machine hybrid, called a cyborg, or something like the Borg from Star Trek. This super machine will solve all our material and spiritual problems by curing disease, extending life expectancy indefinitely, and providing for a meaningful existence through creating a continual sense of euphoria in the brain. There will be no limits to what this super man/machine will be able to do. All we need to do is surrender our wills to achieve universal peace and happiness. {1}

Pink Floyd used to sing, "Welcome to the machine. What did you dream? It's alright we told you what to dream." {2} In the brave new world ruled by the cyborg, dreams will all be programmed and peaceful so as not to upset the inhabitants of

utopia. With this hybrid technology, someone will make our decisions for us.

All technology expresses its creator's values and represents a certain view of the world, and how things should be. It is anything but value-free. The question for us is, who will decide what the future will be like in a technologically determined age?

You are What You Worship

Technology shapes the human conception of itself and its relation to the world, including our view of God. In a mechanical age, it is not surprising that people conceive of themselves and others as machines. {3} Human relationships are reduced to efficiency and usefulness or to convenient arrangements. For example, marriage is already largely viewed as an economic contract between two people who may not have anything else in common, rather than as a sacrificial commitment.

Transhumanist philosophy takes the modern mechanistic view to its ultimate level of altering humanity to become a machine. The idea that we become the thing we worship finds greatest expression in the twenty-first century. Those who worship idols become like them (Ps. 115). Those who worship money become greedy. Those who worship drugs become addicted, and those who worship the machine will become a machine. In the past, philosophers and poets often used the machine as a metaphor of dehumanization and alienation from modern life; modern society was thought to function like a machine. {4} This means in a machine culture, people feel like numbers or spare parts and therefore entirely expendable. Individual meaninglessness in a mechanistic society will be realized in the very near future, so that individuals will be spare parts and completely assimilated. The future super computer will offer humanity everything, except the freedom not to choose

assimilation.

The machine represents the ideal existence, even the ideal being. The idea of "salvation in the machine" derives from modern thought in a deistic and Unitarian God who created a clockwork universe. {5} Transhumanism has simply transposed that deity into the machine itself and removed the Clock Maker. Now it's the clock they worship.

Transhumanism affirms artificial selection instead of natural selection. They believe that through science and technology, humanity can direct the cause of evolution. Humanity controls its own evolutionary process to reach a perfectible state. Instead of millions of years to evolve a new species, it will be done in decades, maybe even in one generation.

The Singularity Is Near

Transhumanists expect the merger of humanity and machine around 2045 in an event they call the Singularity. This means artificial intelligence (AI) will equal or exceed human intelligence and there will no longer be any discernible difference. Humanity will lose all distinct consciousness and consider itself as one being. {6}

Humanity then must change itself genetically to keep pace with AI. This will create a giant planetary super organism that knows no distinctions. Humanity will merge with the rest of nature through genetic engineering, and nature will become indistinguishable from the machine. We will no longer know the difference between organic and inorganic, or natural and artificial, something already prevalent today in cities, weather patterns, and food production.

A super organism looks something like a beehive, anthill, or termite mound; various individual cells work together as one. So by mid-century Transhumanism envisions total global unity, not at the political level between states, but ontologically and biologically. We will have evolved into one massive planet—truly Spaceship Earth, completely interrelated and interdependent, like an anthill. This will be the technological version of the kingdom of God or the Transhumanist version of the millennium.

Ray Kurzweil and the Singularitarians believe people will eventually be able to upload their consciousness into a computer and live forever. [Note: for an intriguing Christian perspective on this idea in a compelling novel, Probe recommends *The Last Christian* by David Gregory.] The religious nature of this movement is obvious in its millennialism or belief in the coming perfect society, and also in its belief in progress and immortality. Critics call the Singularity "the rapture of the nerds," indicating its close connection with religious belief and millennial expectations. The Singularity represents religious belief for computer geeks. The acceptance of progress and human perfection makes Transhumanism the heir of modernity, with its ideal of technological utopianism and its mechanistic view of the body. It's modernism with a vengeance.

The Artilect War

The future may not bring the perfection of the Singularity, but the disaster of the Artilect War. An Artilect is an artificial intelligence or super computer. AI researcher Hugo de Garis predicts that the Transhumanist vision will be disastrous and will result in gigadeath (the death of billions of people). He hypothesizes that by the end of the century, Cosmists, or technically modified people, will want to build Artilects to join with humanity, but that Terrans, or unmodified people, will oppose their construction because it has no benefit to them. A nuclear war will ensue, probably initiated by Terrans as their only way to stop Cosmists. {7}

Jacques Ellul once remarked that "the technical society must

perfect the 'man-machine' complex or risk total collapse." [8] There is no other place to go but up. If the current human enhancement project fails it may prove to have devastating effects for the future of the human race, and if it succeeds the human race faces techno-enslavement or pseudo-extinction by being transformed into another species.

Will the Singularity really happen? It is very possible. Or maybe the Artilect War will happen instead. Perhaps technology will bring the apocalypse instead of utopia. It is all science fiction right now, but science fiction is often correct in the broadest terms. Recall Jules Verne's vision of space travel to the moon in the nineteenth century when people thought it was pure fantasy and laughed because there was no way to break earth's gravitational pull. But his work inspired a generation of rocket scientists to find a way to do it, and within a century man was walking on the moon. Something considered impossible was achieved. {9}

A basic principle of futurism states that anything is possible to achieve within twenty years given the resources to do it. And the Bible states that nothing is impossible for humanity in a unified technological society. Gen. 11:6 says "Now nothing that they imagined will be impossible for them." This of course is talking about Babel, but I think it demonstrates the fact that the discussion of a transhuman transformation should be taken as a credible threat and should be addressed by the church.

Ethic of Limits

The essence of Transhumanist philosophy revolves around the idea that there are no natural or divine limits to what technology can accomplish. It serves the basic technological imperative that says what can be done should be done! This view unleashes all restraint and frees us from all limits, and is one of the greatest examples of the church's cultural

captivity since we do not present a different view of technology from the rest of society.

This maxim is obviously dangerous because any limitless action leads to self-destruction as a natural corrective. Humanity cannot presume to be greater than the natural limits arrayed against it, such as death or the scarcity of resources. Humanity must learn to live within boundaries.

Christians are called to respect limits and the right balance in its use of technology, between its misuse and its non-use. In an age of limitless technology the church must present an ethic of limitation. This means finding limits to technology, such as limiting computer use, limiting driving, electricity, or even not upgrading. This may seem small, but in trying to discover a workable ethic of technology, it represents something we can do right now. The widow's mite (Mark 12:41-43) will not solve the church's budget deficit, but should be given anyway because it was something she could do, so an ethic of limitation remains a course of action open.

An ethic of limitation only becomes obvious when the situation appears desperate, such as with nuclear weapons, where not even one mishap can be afforded. Other examples consist of over-eating, drug addiction, over-fishing or hunting, or any activity that exhausts natural resources. Because people did not practice limits to begin with, they are now faced with a real possibility of collapse or catastrophe. We must discover the limits to any technology, if we are to use technology correctly and benefit from it. The history of the Tower of Babel teaches that if mankind does not practice self control, God will impose limits Himself in judgment (Gen 11:1-9).

Notes

1. Ray Kurzweil, The Age of Spiritual Machines When Computers Exceed Human Intelligence (New York:Penguin, 1999); Gregory Stock, Metaman:The Merging of Humans and Machines into a

Global Superorganism (New York: Simon and Schuster, 1993); Lewis Mumford, The Transformations of Man (New York:Collier, 1956); Jacques Ellul, The Technological Society, (New York: Vintage, 1964), 428-436. It was techno critics like Ellul and Mumford that saw the techno future more clearly and soberly than the previously noted Transhumanists. Ellul argued that information would eventually pass from the machine straight to the human brain electronically without being processed through consciousness and that breeding will all be done through artificial means, and natural procreation will be forbidden (432, 433). Whatever problems and disturbances the technology of the future will create will be solved through "a world-wide totalitarian dictatorship" (434). This is exactly what Transhumanist philosophy will bring. Mumford argued that modern technical society will eventually produce a machine replacement for man (100, 117-132).

- 2. Pink Floyd, "Welcome to the Machine" in Wish You Were Here, Capitol, 1975.
- 3. Cecelia Tichi, Shifting Gears: Technology, Literature, Culture in Modernist America (Chapel Hill, NC: The University of North Carolina Press, 1987), 16; David F. Noble, The Religion of Technology: The Divinity of Man and the Spirit of Invention (New York; Knopf, 1997), 143-171.
- 4. Karl Jaspers, *Man in the Modern Age* (New York:Anchor Books, 1951); Nicols Fox, Against the Machine:The Hidden Luddite Tradition in Literature, Art and Individual Lives (Washington DC:Island Press, 2002).
- 5. Lewis Mumford, The Myth of the Machine: The Pentagon of Power (New York: Harvest, 1970), 33; Noble, The Religion of Technology, 146; Mary Midgley, Science as Salvation: A Modern Myth and Its Meaning (New York: Routledge, 1992).
- 6. Lev Grossman, "2045: The Year Man Becomes Immortal", *Time* (February 21, 2011), 43-49.
- 7. Hugo De Garis, The Artilect War: Cosmists vs. Terrans: A Bitter Controversy Concerning Whether Humanity Should Build Godlike Massively Intelligent Machines (Palm Springs, CA: Etc Publications, 2005).

- 8. Ellul, The Technological Society, 414.
- 9. Howard E. McCurdy, *Space and the American Imagination* (Washington DC:Smithsonian Institute Press, 1997), 9-27.
- © 2012 Probe Ministries

The Impotence of Darwinism: A Christian Scientist Looks at the Evidence

Dr. Ray Bohlin looks at some of the tenets of Darwinism and finds them lacking support in the real world. Speaking from a biblical worldview perspective, he finds that the gaps and inconsistencies in current Darwinian thinking should demand that different theories be examined and evaluated.

This article is also available in **Spanish**.

Darwinism, Design, and Illusions

Darwinian evolution has been described as a universal acid that eats through everything it touches. {1} What Daniel Dennett meant was that evolution as an idea, what he called "Darwin's dangerous idea," is an all-encompassing worldview. Darwinism forms the basis of the way many people think and act. It touches everything.

What Darwin proposed in 1859 was simply that all organisms are related by common descent. This process of descent or evolution was carried out by natural selection acting on variation found in populations. There was no guidance, no purpose, and

no design in nature. The modern Neo-Darwinian variety of evolution identifies the source of variation as genetic mutation, changes in the DNA structure of organisms. Therefore, evolution is described as the common descent of all organisms by mutation and natural selection, and is assumed to be able to explain everything we see in the biological realm.

This explanatory power is what Dennett refers to as "Darwin's dangerous idea." Darwinism assumes there is no plan or purpose to life. Therefore, everything we see in the life history of an organism, including human beings, derives in some way from evolution, meaning mutation and natural selection. This includes our ways of thinking and the ways we behave. Even religion is said to have arisen as a survival mechanism to promote group unity that aids individual survival and reproduction.

Since evolution has become the cornerstone of the dominant worldview of our time—scientific naturalism—those who hold to it would be expected to take notice when somebody says it's wrong! A growing number of scientists and philosophers are saying with greater confidence that Darwinism, as a mode of explaining all of life, is failing and failing badly. Much of the criticism can be found in the cornerstone of evolution, mutation and natural selection and the evidence for its pervasiveness in natural history. One of the biggest stumbling blocks is evolution's repudiation of any form of design or purpose in nature. Even the staunch Darwinist and evolutionary naturalist, Britain's Richard Dawkins, admits, "Biology is the study of complicated things that give the appearance of having been designed for a purpose." {2}

No one denies that biological structures and organisms look designed; the argument is over what has caused this design. Is it due to a natural process that gives the appearance of design as Dawkins believes? Or is it actually designed with true purpose woven into the true fabric of life? Darwinian evolution claims to have the explanatory power and the

evidence to fully explain life's apparent design. Let's explore the evidence.

The Misuse of Artificial Selection

It is assumed by most that evolution makes possible almost unlimited biological change. However, a few simple observations will tell us that there are indeed limits to change. Certainly the ubiquitous presence of convergence suggests that biological change is not limitless since certain solutions are arrived at again and again. There appear to be only so many ways that organisms can propel themselves: through water, over land or through the air. The wings of insects, birds and bats, though not ancestrally related, all show certain design similarities. At the very least, various physical parameters constrain biological change and adaptation. So there are certainly physical constraints, but what about biological constraints?

Darwin relied heavily on his analogy to artificial selection as evidence of natural selection. Darwin became a skilled breeder of pigeons, and he clearly recognized that just about any identifiable trait could be accentuated or diminished, whether the color scheme of feathers, length of the tail, or size of the bird itself. Darwin reasoned that natural selection could accomplish the same thing. It would just need more time.

But artificial selection has proven just the opposite. For essentially every trait, although it is usually harboring some variability, there has always been a limit. Whether the organisms or selected traits are roses, dogs, pigeons, horses, cattle, protein content in corn, or the sugar content in beets, selection is certainly possible. But all selected qualities eventually fizzle out. Chickens don't produce cylindrical eggs. We can't produce a plum the size of a pea or a grapefruit. There are limits to how far we can go. Some

people grow as tall as seven feet, and some grow no taller than three; but none are over twelve feet or under two. There are limits to change.

But perhaps the most telling argument against the usefulness of artificial selection as a model for natural selection is the actual process of selection. Although Darwin called it artificial selection, a better term would have been intentional selection. The phrase "artificial selection" makes it sound simple and undirected. Yet every breeder, whether of plants or animals is always looking for something in particular. The selection process is always designed to a particular end.

If you want a dog that hunts better, you breed your best hunters hoping to accentuate the trait. If you desire roses of a particular color, you choose roses of similar color hoping to arrive at the desired shade. In other words, you plan and manipulate the process. Natural selection can do no such thing. Natural selection can only rely on what variation comes along. Trying to compare a directed to an undirected process offers no clues at all.

Most evolutionists I share this with usually object that we do have good examples of natural selection to document its reality. Let's look at a few well-known examples.

The Real Power of Natural Selection

It should have been instructive when we had to wait for the 1950s, almost 100 years after the publication of *Origin of Species*, for a documentable case of natural selection, the famous Peppered Moth (*Biston betularia*). The story begins with the observation that, before the industrial revolution, moth collections of Great Britain contained the peppered variety, a light colored but speckled moth. With the rise of industrial pollution, a dark form or melanic variety became more

prevalent. As environmental controls were enacted, pollution levels decreased and the peppered variety made a strong comeback.

It seemed that as pollution increased, the lichens on trees died off and the bark became blackened. The previously camouflaged peppered variety was now conspicuous and the previously conspicuous melanic form was now camouflaged. Birds could more readily see the conspicuous variety and the two forms changed frequency depending on their surrounding conditions. This was natural selection at work.

There were always a few problems with this standard story. What did it really show? First, the melanic form was always in the population, just at very low frequencies. So we start with two varieties of the peppered moth and we still have two forms. The frequencies change but nothing new has been added to the population. Second, we really don't know the genetics of industrial melanism in these moths. We don't have a detailed explanation of how the two forms are generated. And third, in some populations, the frequencies of the two moths changed whether there was a corresponding change in the tree bark or not. The only consistent factor is pollution. {3} The most well-known example of evolution in action reduces to a mere footnote. Regarding this change in the Peppered Moth story, evolutionary biologist Jerry Coyne lamented that "From time to time evolutionists re-examine a classic experimental study and find, to their horror, that it is flawed or downright wrong." {4}

Even Darwin's Finches from the <u>Galapagos Islands</u> off the coast of Ecuador tell us little of large scale evolution. The thirteen species of finches on the Galapagos show subtle variation in the size and shape of their beaks based on the primary food source of the particular species of finch. Jonathan Wiener's *Beak of the Finch*{5} nicely summarizes the decades of work by ornithologists Peter and Rosemary Grant. While the finches do show change over time in response to

environmental factors (hence, natural selection), the change is reversible! The ground finches (six species) do interbreed in the wild, and the size and shape of their beaks will vary slightly depending if the year is wet or dry (varying the size seeds produced) and revert back when the conditions reverse. There is no directional change. It is even possible that the thirteen species are more like six to seven species since hybrids form so readily, especially among the ground finches, and survive quite well. Once again, where is the real evolution?

There are many other documented examples of natural selection operating in the wild. But they all show that, while limited change is possible, there are limits to change. No one as far as I know questions the reality of natural selection. The real issue is that examples such as the Peppered Moth and Darwin's Finches tell us nothing about evolution.

Mutations Do Not Produce Real Change

While most evolutionists will acknowledge that there are limits to change, they insist that natural selection is not sufficient without a continual source of variation. In the Neo-Darwinian Synthesis, mutations of all sorts fill that role. These mutations fall into two main categories: mutations to structural genes and mutations to developmental genes. I will define structural genes as those which code for a protein which performs a maintenance, metabolic, support, or specialized function in the cell. Developmental genes influence specific tasks in embryological development, and therefore can change the morphology or actual appearance of an organism.

Most evolutionary studies have focused on mutations in structural genes. But in order for large scale changes to happen, mutations in developmental genes must be explored. Says Scott Gilbert: "To study large changes in evolution, biologists needed to look for changes in the regulatory genes that make the embryo, not just in the structural genes that provide fitness within populations." [6]

We'll come back to these developmental mutations a little later.

Most examples we have of mutations generating supposed evolutionary change involve structural genes. The most common example of these kinds of mutations producing significant evolutionary change involves microbial antibiotic resistance. Since the introduction of penicillin during World War II, the use of antibiotics has mushroomed. Much to everyone's surprise, bacteria have the uncanny ability to become resistant to these antibiotics. This has been trumpeted far and wide as real evidence that nature's struggle for existence results in genetic change—evolution.

But microbial antibiotic resistance comes in many forms that aren't so dramatic. Sometimes the genetic mutation simply allows the antibiotic to be pumped out of the cell faster than normal or taken into the cell more slowly. Other times the antibiotic is deactivated inside the cell by a closely related enzyme already present. In other cases, the molecule inside the cell that is the target of the antibiotic is ever so slightly modified so the antibiotic no longer affects it. All of these mechanisms occur naturally and the mutations simply intensify an ability the cell already has. No new genetic information is added. {7}

In addition, genetically programmed antibiotic resistance is passed from one bacteria to another by special DNA molecules called plasmids. These are circular pieces of DNA that have only a few genes. Bacteria readily exchange plasmids as a matter of course, even across species lines. Therefore, rarely is a new mutation required when bacteria "become" resistant.

They probably received the genes from another bacterium.

Most bacteria also suffer a metabolic cost to achieve antibiotic resistance. That is, they grow more slowly than wild-type bacteria, even when the antibiotic is not present. And we have never observed a bacterium changing from a single-celled organism to a multicellular form by mutation. You just get a slightly different bacterium of the same species. The great French evolutionist Pierre Paul-Grassé, when speaking about the mutations of bacteria said,

"What is the use of their unceasing mutations if they do not change? In sum the mutations of bacteria and viruses are merely hereditary fluctuations around a median position; a swing to the right, a swing to the left, but no final evolutionary effect." [8]

What I have been describing so far is what is often referred to as microevolution. Evolutionists have basically assumed that the well-documented processes of microevolution eventually produce macroevolutionary changes given enough time. But this has been coming under greater scrutiny lately, even by evolutionists. There appears to be a real discontinuity between microevolution and the kind of change necessary to turn an amoeba-like organism into a fish, even over hundreds of millions of years.

Below is just a quick sampling of comments and musings from the current literature.

"One of the oldest problems in evolutionary biology remains largely unsolved. . . . historically, the neo-Darwinian synthesizers stressed the predominance of micromutations in evolution, whereas others noted the similarities between some dramatic mutations and evolutionary transitions to argue for macromutationism." {9}

"A long-standing issue in evolutionary biology is whether

the processes observable in extant populations and species (microevolution) are sufficient to account for the larger-scale changes evident over longer periods of life's history (macroevolution)."{10}

"A persistent debate in evolutionary biology is one over the continuity of microevolution and macroevolution—whether macroevolutionary trends are governed by the principles of microevolution." {11}

While each of the above authors does not question evolution directly, they are questioning whether what we have been studying all these years, microevolution, has anything to do with the more important question of what leads to macroevolution. And if microevolution is not the process, then what is?

Natural Selection Does Not Produce New Body Plans

The fundamental question which needs addressing is, How have we come to have sponges, starfish, cockroaches, butterflies, eels, frogs, woodpeckers, and humans from single cell beginnings with no design, purpose or plan? All the above listed organisms have very different body plans. A body plan simply describes how an organism is put together. So can we discover just how all these different body plans can arise by mutation and natural selection? This is a far bigger and more difficult problem than antibiotic resistance, a mere biochemical change. Now we have to consider just how morphological change comes about.

The problem of macroevolution requires developmental mutations. Simply changing a protein here and there won't do it. We somehow have to change how the organism is built. Structural genes tend to have little effect on the development of a body plan. But the genes that control development and

ultimately influence the body plan tend to find their expression quite early in development. But this is a problem because the developing embryo is quite sensitive to early developmental mutations. Wallace Arthur wrote:

"Those genes that control key early developmental processes are involved in the establishment of the basic body plan. Mutations in these genes will usually be extremely disadvantageous, and it is conceivable that they are always so." {12}

But these are the mutations needed for altering body plans. However, evolutionists for decades have been studying the wrong mutations. Those dealing with structural genes, microevolution, only deal with how organisms survive as they are, it doesn't tell us how they got to be the way they are. Optiz and Raft note that

"The Modern Synthesis is a remarkable achievement. However, starting in the 1970's, many biologists began questioning its adequacy in explaining evolution. . . . Microevolution looks at adaptations that concern only the survival of the fittest, not the arrival of the fittest." {13}

Wallace Arthur:

"In a developmentally explicit approach it is clear that many late changes can not accumulate to give an early one. Thus if taxonomically distant organisms differ right back to their early embryogenesis, as is often the case, the mutations involved in their evolutionary divergence did not involve the same genes as those involved in the typical speciation event." {14}

To sum up the current dilemma, significant morphological change requires early developmental mutations. But these mutations are nearly universally disadvantageous. And microevolution, despite its presence in textbooks as proof of evolution, actually tells us precious little about the

evolutionary process. If these developmental mutations that can offer an actual benefit are so rare, then macroevolution would be expected to be a slow and difficult, yet bumpy process. Indeed, Darwin expected that "As natural selection acts solely by accumulating slight, successive, favorable variations, it can produce no great or sudden modifications; it can only act in short and slow steps."

The origin of body plans is wrapped up in the evidence of paleontology, the fossils and developmental biology. What does the fossil record have to say about the origin of basic body plans? When we look for fossils indicating Darwin's expected slow gradual process we are greatly disappointed. The Cambrian Explosion continues to mystify and intrigue. The Cambrian Explosion occurred around 543 million years ago according to paleontologists. In the space of just a few million years, nearly all the animal phyla make their first appearance.

"The term 'explosion' should not be taken too literally, but in terms of evolution it is still very dramatic. What it means is rapid diversification of animal life. 'Rapid' in this case means a few million years, rather than the tens or even hundreds of millions of years that are more typical . . {15}

Prior to the Cambrian, (550-485 million years ago), during the Vendian (620-550 million years ago) we find fossil evidence for simple sponges, perhaps some cnidarians and the enigmatic Ediacaran assemblage. For the most part we find only single cell organisms such as bacteria, cyanobacteria, algae, and protozoan. Suddenly, in the Cambrian explosion (545-535 million years ago) we find sponges, cnidarians, platyhelminthes, ctenophores, mollusks, annelids, chordates (even a primitive fish), and echinoderms.

While many animal phyla are not present in the Cambrian, they are mostly phyla of few members and unlikely to be fossilized in these conditions. James Valentine goes further in saying

that "The diversity of body plans indicated by combining all of these Early Cambrian remains is very great. Judging from the phylogenetic tree of life, all living phyla (animal) were probably present by the close of the explosion interval." {16} Later Valentine assures us that the fossil record of the explosion period is as good as or better than an average section of the geologic column. {17} So we just can't resort to the notion that the fossil record is just too incomplete.

In the Cambrian Explosion we have the first appearance of most animal body plans. This sudden appearance is without evidence of ancestry in the previous periods. This explosion of body plans requires a quantum increase of biological information. New genetic information and regulation is required. {18} Mutations at the earliest stages of embryological development are required and they must come in almost rapid fire sequence. Some have suggested that perhaps the genetic regulation of body plans was just more flexible, making for more experimentation. But we find some of the same organisms in the strata from China to Canada and throughout the period of the explosion. These organisms do not show evidence of greater flexibility of form.

The type of mutation is definitely a problem, but so is the rate of mutation. Susumo Ohno points out that "it still takes 10 million years to undergo 1% change in DNA base sequences. . . [The] emergence of nearly all the extant phyla of the Kingdom Animalia within the time span of 6-10 million years can't possibly be explained by mutational divergence of individual gene functions." {19}

Darwinism would also require early similarities between organisms with slow diversification. Phyla should only become recognizable after perhaps hundreds of millions of years of descent with modification. Yet the great diversity appears first with gradual drifting afterward, the opposite of what evolution would predict. Again some suggest that the genetic structure of early organisms was less constrained today,

allowing early developmental mutations with less severe results. But there would still be some developmental trajectory that would exist so the selective advantage of the mutation would have to outweigh the disruption of an already established developmental pathway.

But each of these speculations is unobservable and untestable. It's quite possible that developmental constraints may be even more rigid with fewer genes. But even if the constraints were weaker, then there should be more variability in morphology of species over space and time. But as I said earlier, the Cambrian fauna are easily recognizable from the early Cambrian deposits in China and Greenland to the middle Cambrian deposits of the Burgess Shale. There is no testable or observational basis for hypothesizing less stringent developmental constraints.

This stunning burst of body plans in the early Cambrian and the lack of significant new body plans since the Cambrian indicate a limit to change. Evolutionary developmental biologist Rudolf Raff told *Time* magazine over ten years ago that "There must be limits to change. After all, we've had these same old body plans for half a billion years." {20} Indeed, perhaps these limits to change are far more pervasive and genetically determined than Raff even suspects.

Along the way, functional organisms must form the intermediate forms. But even the functionality of these intermediate organisms transforming from one body plan to another has long puzzled even the most dedicated evolutionists. S. J. Gould, the late Harvard paleontologist, asked,

"But how can a series of reasonable intermediates be constructed? . . . The dung-mimicking insect is well protected, but can there be any edge in looking only 5 percent like a turd?" {21}

With his usual flair, Gould asks a penetrating question. Most

have no problem with natural selection taking a nearly completed design and making it just a little bit more effective. Where the trouble really starts is trying to create a whole new design from old parts. Evolution has still not answered this critical question. I fully believe that evolution is incapable of answering this question with anything more than "I think it can." However, unlike the little train that could, it will take far more than willpower to come up with the evidence.

In this brief discussion I haven't even mentioned the challenges of <u>Michael Behe's irreducible complexity</u>, {22} William Dembski's specified complexity, {23} and a host of other evolutionary problems and difficulties. This truly is a theory in crisis.

Notes

- 1. Daniel Dennett, *Darwin's Dangerous Idea* (New York: Simon and Schuster, 1999).
- 2. R. Dawkins, The Blind Watchmaker (W. W. Norton, 1986), 1.
- 3. Jonathan Wells, *Icons of Evolution* (Washington, DC: Regnery Publishing, Inc, 2000), 137-157.
- 4. Jerry Coyne, "Not black and white," *Nature* 396 (1998): 35-36.
- 5. Jonathan Weiner, *The Beak of the Finch* (New York: Alfred A. Knopf, 1994).
- 6. Scott F. Gilbert, "Opening Darwin's black box: teaching evolution through developmental genetics," *Nature Reviews Genetics* 4 (2003): 735-741.
- 7. Lane Lester and Raymond G. Bohlin, *The Natural Limits to Biological Change* (Richardson Tex.: Probe Books, 1984, 1989), 103,170.
- 8. Pierre-Paul Grassé, *Evolution of Living Organisms* (New York: Academic Press, 1977), 87.
- 9. David L. Stern, "Perspective: evolutionary developmental biology and the problem of variation," *Evolution* 54 (2000): 1079-1091.

- 10. Sean B. Carroll, "The big picture," *Nature* 409 (2001): 669.
- 11. Andrew M. Simons, "The continuity of microevolution and macroevolution," *Journal of Evolutionary Biology* 15 (2002): 688-701.
- 12. Wallace Arthur, *The Origin of Animal Body Plans* (Cambridge: Cambridge University Press, 1997), 14.
- 13. S. Gilbert, J. Optiz, and R. Raff, "Review—Resynthesizing Evolutionary and Developmental Biology," *Developmental Biology* 173 (1996): 361.
- 14. Wallace Arthur, The Origin of Animal Body Plans, 22.
- 15. S. Conway Morris, *Crucible of Creation* (Oxford: Oxford University Press, 1998), 31.
- 16. James Valentine, *On the Origin of Phyla* (Chicago: University of Chicago Press, 2004), 183.
- 17. Ibid., p. 194.
- 18. Stephen C. Meyer, "The origin of biological information and the higher taxonomic categories," *Proceedings of the Biological Society of Washington* 117 (2), (2004):213-239.
- 19. Susumo Ohno, "The notion of the Cambrian pananimalia genome," *PNAS USA* 93 (1996): 8475-78.
- 20. Rudolf Raff, quoted in "Then Life Exploded," by J. Madeleine Nash, *Time*, Dec. 4, 1995, p. 74.
- 21. S. J. Gould, Ever Since Darwin, 1977, 104.
- 22. Michael Behe, Darwin's Black Box: The Biochemical Challenge to Evolution (New York: Free Press, 1996).
- 23. William A. Dembski, No Free Lunch: Why Specified Complexity Cannot Be Purchased without Intelligence, (Lanham, Maryland: Roman and Littlefield, 2002).
- © 2005 Probe Ministries