Animal/Human Hybrids

Editor’s Note: The bulk of Heather Zeiger’s study in bioethics has focused on the major issues addressed in American media, politics and science, such as stem cells, cloning and euthanasia, which is why she so anticipated this year’s theme for the Center for Bioethics and Human Dignity Conference: Global Bioethics. The global context brought a broader perspective on the issues surrounding bioethics: India’s medical tourism and black market organ donations, treating AIDS/HIV in Africa with limited resources, and euthanasia laws in Australia. One country that has been at the forefront of bioethics news is Great Britain because of their lenient legislation on issues concerning human dignity and “human exceptionalism” (the idea that humans have a higher moral status than any other species). This is the first article emerging from her studies and experience at the Global Bioethics conference.

Dr. Calum MacKellar of the Scottish Council on Human Bioethics, who has represented Scotland at the Council of Europe and UNESCO, discussed human/animal hybrids, which can be legally created for research purposes in Great Britain. This article reports the major points of Dr. MacKellar’s lecture and unless otherwise noted, all facts and statistics are drawn from his extended report on the Scottish Council on Human Bioethics Web site (www.schb.org.uk).

What Are Hybrids? What Are the Possibilities?

True Hybrids are embryos formed when the gametes (egg and sperm) are from different species. For example a human/chimp hybrid would be formed from the combining of a human egg with a chimpanzee sperm, or vice versa. These true hybrids create a new entity or species. One familiar example brought about by breeding is a mule, which is produced from horse and donkey gametes. In nature animal/animal hybrids tend to be less fit than their parents. Experiments to combine human and animal gametes have not been successful.

Cybrids are formed when the nucleus of an egg from one species is removed and filled with the nuclear material of another species. This mimics the technology of cloning, except one is using nuclear material from one species and a cell from a different species. The term cybrid comes from the combination of “cytoplasmic hybrid” because the genetic material in this new embryo is 99.9% of the nuclear species and 0.01% of the species that donated the egg [Michael Cook, “Soft Cell: How Scientists Are Easing away Opposition to Animal-Human Hybrids” Salvo, Issue 4, Winter 2009]. Most genetic material is found in the nucleus, but a little bit is left in the cytoplasm of the egg. Scientists have been able to insert human genetics (a nucleus) into a cow’s egg (an enucleated egg). The resulting embryo survived for twelve days. Other experiments have involved inserting human genetic material into a frog’s egg and into a rabbit’s egg. Neither of these survived beyond a week and never reached the blastocyst stage.

Chimeras (kī-‘mir-uhz) are formed when the cells of one species are added to the embryo of another species. This results in an animal that has distinct parts from one species or the other. Think of the centaur in fantasy fiction. Fictional centaurs exhibit distinct parts that are human and distinct parts that are horse. This has actually been done in the lab with a goat and sheep. The resulting animal did survive and had distinctive goat legs and a distinctive sheep head.

Transgenic embryos are created by adding a few genes from one species into the embryo of another species. However, only a few genes can be added before the embryo collapses, providing self-limitations for this technique. Scientists have inserted human genes into pigs to create human insulin for diabetes patients. Scientists have also attempted to replace damaged human heart valves with animal heart valves. This is using animal parts in a mechanistic sense, and is known as xenotransplantation.

Although the media and legislation discuss human/animal hybrids, they are really talking about human/animal cybrids. While there are examples of hybrids in nature, thus far all experiments with human/animal hybrids have proven unsuccessful, even using in vitro fertilization technology.

Is This Legal?

Very few countries have passed specific legislation pertaining to any kind of combination of human and non-human material. Most laws either single out humans or animals. However, several recent initiatives have been discussed:

Council of Europe: Embryonic, Foetal and Post-natal Animal-Human Mixtures, Doc. 10716 (October 11, 2005)—This document encourages the participating states to consider the ethical ramifications of creating human/animal hybrids, and also encourages the formation of a steering committee within the Council of Europe to address these ethical issues.

Canada: Assisted Human Reproduction Act 2004 —This act prohibits the creation of a chimera or a hybrid and prohibits the transfer of a chimera or hybrid into a human being or a non-human life form.

USA: Draft Human Chimera Prohibition Act of 2005 (S.1373) —This draft, introduced by Senator Sam Brownback, would prohibit “any person to knowingly, in or otherwise affecting interstate commerce: (1) create or attempt to create a human chimera; (2) transfer or attempt to transfer a human embryo into a non-human womb; (3) transfer or attempt to transfer a non-human embryo into a human womb; or (4) transport or receive for any purpose a human chimera.” In this case, some hybrids would fall under the category of chimera.

United Kingdom: Human Fertilisation and Embryology Act (1990)—This legislation states that the creation of human/animal entities would exist in a “legal vacuum” and hybrids could be formed if a proper license is obtained. The importance of this act is the fact that it makes it unclear whether the human/animal entities fall under human or animal legislation.

What Are the Consequences of Using This Technology?

Legal Consequences

There are several legal issues to consider, but probably the most troubling is whether the entity produced should fall under human or animal legislation. Several questions follow this, such as “What percentage of the being needs to be human to fall under human legislation? What if the human/animal entity began as 30% human and 70% animal, but the human cells grew faster and the entity ended up being 70% human and 30% animal?” Dr. MacKellar preferred erring on the side of caution and giving the entity the protection and dignity entitled to a human being, however this is only a protective declaration and does not solve the myriad legal issues surrounding the creation of this new entity.

Societal Consequences

The formation of an entity that is both animal and human raises questions of personhood and challenges our definition of humanness. These beings will inevitably be met with challenges that go beyond identification with a minority group. Would protections such as the Fourteenth Amendment apply to these creatures, and how human would they have to be for them to possess rights and privileges? Would society want to grant them rights and privileges? Would the military want to create a human/ape hybrid soldier in hopes that they would be bigger, stronger, and easier to feed? Given human history, the temptation to relegate these beings to a lower class would be inevitable.

There are risks associated with diseases that may cross the species barrier. As Dr. MacKellar pointed out, we have several examples of diseases crossing the species barrier including HIV, swine flu and bird flu. We also know that these diseases can sometimes be more harmful or even fatal to one species than they were to another. If an entity is part human and part animal, and a disease is very contagious among either type of animal it shares characteristics with, it will likely infect the hybrid. At this point, the disease may adapt to human DNA, posing a great health threat to all humans, not just hybrids.

Do Hybrids and Cybrids Have Souls?

I believe, from a biblical perspective, the creation of hybrids, cybrids, and chimeras is unethical. However, some instances of transgenic technology, namely xenotransplantation, may be ethical, especially since there are built-in biological limitations regarding how many genes can be inserted into another species.

Do these procedures violate the sanctity of human life? Several thoughts:

• Humans are created in God’s image (Gen 1:26);

• We were created separately (Gen 1:25, 26). We were created differently than the animals (“Let the earth bring forth living creatures…” Gen 1:24; “then the Lord God formed the man of dust from the ground and breathed into his nostrils the breath of life, and the man became a living creature” Gen 2:7);

• We humans were given dominion over the animals (Gen 1:29, 30). Therefore, these procedures do seem to violate the sanctity of human life as revealed in Scripture.

Are scientists attempting to bridge the gap in created kinds?

God directly created animals according to their kind, and it is implied in the flood account that He intended for them to reproduce according to their kind (Gen. 1:21; Gen. 8:17).

The Bible indicates that man has dignity and worth. If we try to create a being that might be less-than-human by combining it with animal cells or gametes, this would diminish such God-given qualities. It is from a naturalistic perspective that people believe animals are better than man because they seem to be stronger, faster, or heartier. This is not the Biblical perspective.

Do these procedures have something in common with bestiality?

One could argue that the creation of human/animal hybrids may constitute an instance of bestiality. Biblically, bestiality is a type of fornication with animals; it is a type of intimacy that perverts the real intimacy that God designed between a husband and wife. I find bestiality to be a particularly distasteful subject, and perhaps we get an indication of God’s distaste for this since it is a sin that was punishable by death (Ex. 22:19; Lev. 18:23; Lev. 20:15, 16; Deut. 27:21). Procreation and consummation are not distinctly separate in the Bible. It is only through modern technology that procreation can occur in the laboratory apart from consummation. I think an argument could be made that procreation with human and animal gametes is a connection with animals that man was not meant to experience.

But what about…?

This article is a short report on hybrids and variations on combining human and non-human species, but we have not even discussed the multiple questions that arise from this type of experiment, such as:

• Why are scientists doing this?

• What are the implications for common descent if human and animals can breed?

• How does this affect the definition of species?

Also, I did not really deal with whether hybrids have souls or not because we just don’t know. Personally, I think it will be biologically impossible to create a true human/animal hybrid, but cybrids may be a possibility. I think that, much like clones, a cybrid that grows beyond the embryonic stage would be very unstable and unhealthy as well as incredibly expensive and inefficient to make. And much like clones, I can’t answer if they would have a soul.

I am thankful for groups like the Scottish Council on Human Bioethics for addressing this topic in secular language within the public square, but with an underlying Biblical perspective. It is groups like this that enable us to interact in a well-informed way in our places of influence. Whether it is voting for legislation or simply talking with our friends at Starbucks, you don’t have to work for the Council of Europe to champion the Biblical perspective within the public square.

You can find Dr. MacKeller’s full report on the Scottish Council of Human Bioethics Web site: www.schb.org.uk.

© 2009 Probe Ministries


The Natural Limits to Biological Change

Summarizing his book by the same name, Probe’s Dr. Ray Bohlin critiques both Neo-Darwinism and punctuated equilibrium and offers an alternative based on intelligent design.

One of the most significant questions in the origins debate concerns the nature of biological change. Can organisms change into an infinite array of creatures? Or are there genetically imposed limits to the amount of change which can take place? There are two major theories of evolutionary change: neo-Darwinism and punctuated equilibrium. As creationists, Lane Lester and I proposed in 1984 that indeed there are limits to change in our book, The Natural Limits to Biological Change. Theoretically, it may seem difficult to propose that immense variety may occur within a group of organisms yet this variety is constrained within certain genetically induced limits. It may seem contradictory even. But in the intervening ten years, my confidence in the proposal has only strengthened, and my confidence in any evolutionary mechanism to accomplish any significant adaptational change has waned considerably.

The arguments against neo-Darwinism center around four topics: mutation, natural selection, population genetics, and paleontology. Our major objection to the role of mutations in evolutionary change is the clear lack of data to indicate that mutations really accomplish anything new. While some weird-looking fruit flies have been created in the laboratory, they are still fruit flies. Bacteria are still bacteria. We quoted from Pierre-Paul Grasse’, the great French evolutionist. When commenting on the mutations of bacteria he said:

What is the use of their unceasing mutations if they do not change? In sum, the mutations of bacteria and viruses are merely hereditary fluctuations around a median position; a swing to the right, a swing to the left, but no final evolutionary effect.

A mechanism for the creation of new genetic material is also sadly inadequate. Sometimes, an extra copy of a gene arises due to a DNA duplication error. Evolutionists suggest that this extra gene can accumulate mutations and eventually code for a new gene with a different function. In reality, however, this fails to explain how an old gene takes on a new function and new regulation pathways by the introduction of genetic mistakes into the gene and the regulatory apparatus.

Natural selection is a conservative process, not a creative one. The famous example of peppered moths teaches us how a species survives in a changing environment by possessing two varieties adapted to different conditions. Antibiotic resistance in bacteria only instructed us in the ingenious mechanisms of different bacteria to share the already existing genes for antibiotic resistance among themselves.

Decades of research in the science of population genetics has not helped the neo-Darwinist position. The data from protein and gene variation shed only a dim light on the major problem of evolution—the appearance of novel adaptations. The major significance of population genetics has been helping to understand how an organism responds to minor environmental fluctuations. And even this can be clouded in fundamental differences in theory.

The data of paleontology have been elaborated at length elsewhere. Gradual, neo-Darwinian evolution is not observable in the fossil record. The rarity of transitional forms has been called the trade secret of paleontology. Mutations, natural selection, genetics, and paleontology have all proved to be dead ends for Darwinism.

Obstacles to the Theory of Punctuated Equilibrium

The coelacanth is a fish that has existed for hundreds of millions of years according to evolutionists and was thought to resemble the ancestors of modern amphibians. However, research into their anatomy, physiology, and life history since their rediscovery off Madagascar in 1938 have revealed no clues to their possible preadaptation to a terrestrial existence. The coelacanth is an example of stasis—the long-term stability of new species—the first cornerstone of evolution. A second is the sudden appearance of new species. One doesn’t have to look very far for statements by paleontologists pointing to the fact that transitional forms are traditionally absent.

Introduced in 1972 by Niles Eldredge and Stephen Gould as a description of the pattern in the fossil record, punctuated equilibrium centers on the claims of stasis and sudden appearance. The major vehicle of evolutionary change becomes speciation, a process which gives rise to new species. Eldredge and Gould suggested that where there is lots of speciation, there should be lots of morphological differences. Where there is little speciation, there will be few morphological differences.

Morphological Change Becomes Associated with Speciation

If morphological change is supposed to be associated with speciation, then groups of organism that contain large numbers of species should also display large morphological differences within the group. But there are numerous examples of specific groups of related organisms that contain large numbers of species, like the minnows (Notropis), which show very little morphological divergence. This is exactly the opposite of their prediction. Sunfishes (Lepomis), however, a group with relatively few species, show just as much morphological divergence as the minnows. This is one more contradiction of punctuated equilibrium because here there is little speciation but a lot of differences.

Another tricky aspect of the claims of punctuated equilibrium is that a new species of fossil can only be recognized because of observable differences, usually in the skeletal structure. Biological species, however, are designated by many criteria (chromosome structure, etc.,) that cannot be detected in a fossil. Therefore, trying to extend a paleontological description of species and speciation will be very difficult.

What we see is that beyond punctuated equilibrium’s ability to describe the fossil record, it is of little use to evolutionary biologists because they cannot imagine a way to make it work with real organisms. Gould and Eldredge admitted as much in their review of punctuated equilibrium’s progress in the journal, Nature, in 1993 when they lamented that:

But continuing unhappiness, justified this time, focuses upon claims that speciation causes significant morphological change, for no validation of such a position has emerged.

In addition, punctuationalists offer no new mechanisms for arriving at new genetic information. No new theory of evolutionary change is complete without some workable mechanism for generating new genetic information. There appears to be a general lack of appreciation as to what a mutation is and what its effects on the organism may be. Discussions of regulatory and developmental mutations are carried out with no regard as to the overwhelmingly destructive effect such mutations produce compared to mutations in structural genes. Developmental mutations can cripple an organism or even lead to death. Thus, punctuated equilibrium raises more questions than it answers.

Another Alternative

As I have tried to point out, the two major competing models of evolutionary change are far from being considered accepted facts of nature. Both suffer from serious problems from which, some say, they may never be able to recover. However, if one sits back and views the evidence as a whole, a totally different perspective arises as a possibility.

First, virtually all taxonomic levels, even species appear abruptly in the fossil record. This, it will be remembered, is one of the sharper criticisms of neo-Darwinism, and one of the two cornerstones of punctuated equilibrium. It is relevant not only that the various levels of taxa appear abruptly but also that alongside the higher taxonomic levels there are unique adaptations. This is the key. Unique and highly specialized adaptations usually, if not always, appear fully formed in the fossil record. The origin of the different types of invertebrate animals such as the sponges, mollusks, echinoderms like the starfish, arthropods like crustaceans, and others all appear suddenly, without ancestors, in the Cambrian period.

Second, there is the steady maintenance of the basic body plan of the organism through time. One need only think of the living fossils from paleontology and of bacteria and the Drosophila fruit flies from genetics. The basic body plan does not change whether analyzed through time in the fossil record or through mutations in the laboratory. This conclusion is reinforced by animal and plant breeders through artificial selection. There is much variation, but it can be manipulated only to a limit.

Third, we found that in the few cases where organisms have adapted to new environments, this is predominantly brought about through very ordinary processes utilizing genetic variation that was probably always present in the species. Mutations, when they do play a role, produce defective organisms that survive and thrive only in unusual and unique environments. At best the chances of mutants out-competing normal or wild-type organisms are minute.

Fourth, we see the apparent inability of mutations to truly contribute to the origin of new structures. The theory of gene duplication in its present form is unsuitable to account for the origin of new genetic information that is a must for any theory of evolutionary mechanism.

Fifth, we observed the amazing complexity and integration of the genetic machinery in every living cell. What we do know of the genetic machinery is impressive; what we have yet to learn staggers the imagination. One’s curiosity is aroused as to how mutation, selection, and speciation could ever hope to improve or change the machinery in any substantial way. The cellular machinery poses an even bigger problem. The molecular workings of cilia, electron transport, protein synthesis, cellular targeting, and so many others, are simply astounding.

The sixth and final element involves the big picture. Ecosystems themselves are a marvelous balance of complexity and integration. One can devise schemes of energy flow or biomass flow through an ecosystem as complicated as any biochemical pathway or genetic regulatory scheme. At the center of all this is the wondrous fit of an organism to its own peculiar environment. In the time before Darwin this wondrous fit was the chief evidence of a Supreme Designer.

So, while it is clear that organisms change, there may be a limit to biological change.

The Natural Limits to Biological Change

Has Darwin’s theory of natural selection really shown intelligent design in nature to be unreasonable? In view of the failure of evolutionary mechanisms to be convincing, might biological change be a limited affair? Could the limits of biological change arise from the very nature of the genetic code itself, the unique set of structural and regulatory genes present in various groups of organisms and the tight organization and coadapted nature of the entire genome? I believe there are limits to biological change and that these limits are set by the structure and function of the genetic machinery.

Intelligent design is not a new concept. Of course the concept itself, goes back into the previous centuries. Intelligent design, however, is taking on a more sophisticated form. As knowledge of informational codes and information theory grows, the possibility of making predictions of the intricacy of the DNA informational code grow more realistic. If DNA required intelligent pre-programming, the signs should be unmistakable.

The mark of intelligence is not exactly hard to discern. We speak of the genetic code, DNA transcribed into RNA, RNA translated into protein. These are language terms. They are used not just because they are convenient, but because they accurately describe what is going on in the cell. There is a transfer of information. I believe that an application of information theory to the field of genetics will yield a comprehensible theory of limited biological change.

This is wholly reasonable because information theory concerns itself statistically with the essential characteristics of information and how that information is accurately transmitted or communicated. DNA is an informational code, so the connection is readily apparent. The overwhelming conclusion is that information does not and cannot arise spontaneously by mechanistic processes. Intelligence appears to be a necessity in the origin of any informational code, including the genetic code, no matter how much time is given.

More directly though, our concern was with what happens after the code is in place. Could intelligence be required for the first cell but not afterward? To answer that we must look at the informational content of DNA a little more closely. Similar to what happens in language, there are two fundamental principles involved in the expression of genetic information. First, there is a finite set of words that are essentials of content. In organisms, this is comparable to structural genes. Second, the rules of grammar provide for the richness of expression using the finite set of words. In organisms, these rules or programs consist of the regulatory and developmental mechanisms. In human languages, given a finite set of words and a set of rules, the variety of expression goes on and on. It is conceivable, therefore, that different groups of organisms, maybe bats and whales for example, are characterized by different regulatory mechanisms, i.e., different developmental programs.

There is growing interest in a biological theory of intelligent design around the world. While many still vigorously oppose all such ideas, there is a much greater openness than ever before. Philosophers, mathematicians, chemists, engineers, and biologists are willing to suggest, even demand that a more rigorous study of intelligent design in relation to biological organisms be pursued. A renaissance may be around the corner.

Confirming New Data

It was known ten years ago that much of the information for the early stages of development were contained in the cytoplasm or the cell membrane. This has since been rigorously confirmed. There is information, therefore, that is possibly not contained in the nucleus. So our emphasis on the genetic material was a little too strong. There is at least another source of information to consider. This seems to imply that in order to change the body plan changes are required to be coordinated in perhaps two unrelated sources of information in the embryo. This would make a change in the developmental pathway even more difficult to achieve.

Michael Denton’s book, Evolution: A Theory in Crisis, revealed that development through the earliest embryonic stages is vastly different in amphibians, reptiles, and mammals. Supposedly similar early structures arise from non-similar structures and pathways in the embryo. This bears witness to our contention that unique developmental pathways would separate the basic types, even when the structures are thought to be homologous.

The complexity of living things continue to astound the imagination. Michael Behe has introduced the term irreducible complexity. Irreducibly complex systems are systems which must have all molecular components present in order to be functional. He used the molecular machinery of cilia as an example. Cilia contain numerous molecular components such as the proteins nexin, dynein, and microtubules that all need to be present if a cilia is to perform at all. Cilia cannot arise step by step.

But perhaps the most gratifying confirmation of our ideas came about recently in the publication of a book edited by J. P. Moreland, The Creation Hypothesis. The chapter on the origin of human language contained this passage on the complexities of the genetic language.

In order for any organism to be what it is, its genetic program, (DNA) must specify what sort of organism it will be and, within surprisingly narrow limits, what specific characteristics it will assume. Such limits, innately determined, apply as much to a human being or to a Rhesus monkey as to a special variety of fruit fly or yeast or bacterium (p. 252).

Later after discussing the cascade of information from DNA to protein they conclude:

The whole cascading network of relationships must be specified within rather narrowly defined limits in order for any organism whatever to be a viable possibility. Moreover, the problem of biogenesis and the origin of human language capacity are linked at their basis by more than just a remarkable analogy. It turns out that the human genome must include the essential characteristics of the entire conceptual system that we find manifested in the great variety of languages and their uses, but within rather narrow limits, by human beings throughout the world (p. 254).

The use of such phrases as “narrowly defined limits” and “great variety” applying to both human languages and the information content of DNA is promising. If languages require intelligent pre-programming, then so does the genetic code.

It is difficult for me to imagine that that honest men and women could study the immense complexities of even the “simplest” creatures and not marvel, or better yet worship, at the feet of their Creator.

©1994 Probe Ministries