The Little Lamb That Made a Monkey of Us All

Like many others, I was caught totally flat-footed, astonished by the announcement of the successful cloning of an adult sheep, Dolly. Caught so unaware, in fact, that Probe is reairing my three-year-old program on human cloning the week of March 17-21, 1997, because so little had changed. When the announcement of a successful sheep cloning was made, it was too late to pull the program from the schedule; tapes had already been sent to all the radio stations and there just wasn't time to replace it in only three weeks. Consequently (and spurred by a number of phone calls and e-mails from around the country), I have compiled a few thoughts and comments regarding scientific and moral considerations about this historic breakthrough to temporarily plug the gap.

Scientific Considerations

Normal mammary cells were intentionally starved of critical growth nutrients in order to allow the cells to reach a dormant stage of the normal cell cycle. This process of bringing the cells into dormancy apparently allows the cell's DNA to be reprogrammed by the proteins already in the egg cell for renewed cell division and new cell functions. The cells were fused with an enucleated egg cell (a cell that had its nucleus removed) and stimulated to begin cell division by an electric pulse.

The process was inefficient. Out of 277 cell fusions, 29 began growing *in vitro*. All 29 were implanted in receptive ewes, 13 became pregnant, and only one lamb was born as a result. This is a success rate of only 3.4%. In nature, somewhere between 33 and 50% of all fertilized eggs develop fully into newborns.

The procedure was very non-technical, and no one is really

sure why it worked. It needs to be repeated. All attempts to clone mouse cells from adults have failed. Some suggest that sheep embryos do not employ the DNA in the nucleus until after 3-4 cell divisions. This may give the egg cell sufficient time to reprogram the DNA from mammary cell functions to egg cell functions. Human and mouse cells employ the nuclear DNA after the second cell division. Human and mouse cells may not be capable of being cloned because of this difference.

The purpose of these experiments was to find a more effective way to reproduce genetically engineered sheep for the production of pharmaceuticals. A sheep embryo can be engineered to produce a certain human protein or hormone in its milk. The human protein can then be harvested from the milk and sold on the market. Instead of trusting the somewhat unpredictable and time-consuming methods of normal animal husbandry to reproduce this genetic hybrid, cloning it assures that the engineered gene product will not be lost.

Genetic material is the same in all cells of an organism (except the reproductive cells, sperm and egg, which have only half the full complement), but differentiated cells are biochemically programmed to perform limited functions, and all other functions are turned off. Based on attempts in frogs and mice, most scientists felt that the reprogramming was impossible.

A critical question is the lifespan of Dolly. All cells have a built-in senescence or death after so many cell divisions. Dolly began from a cell that was already six years old. A normal lifespan for a ewe is around 11 years. Will Dolly live to see her seventh birthday?

It is also uncertain as to whether Dolly will be reproductively fertile. Frog clones are usually sterile.

Reprogramming the nucleus could lead to procedures to stimulate degenerating nerve cells to be replaced by newly

growing nerve cells. Adults do not generate nerve cells normally.

Moral Considerations

Will humans be cloned for spare parts? While this is certainly possible, I consider it very unlikely that this would be sanctioned by any government. That doesn't mean, however, that someone won't try.

Will humans be cloned to replace a dying infant or child? This is certainly a possibility, but we need to ask if this is an appropriate way to deal with loss. Might unrealistic expectations be placed on a clone that would not be placed on a normally-produced child?

Will humans be cloned to produce children for otherwise childless couples? This is the most often-given reason for human cloning. This argument is unpersuasive when there are currently so many children that need adoption. Also, this further devalues children to the level of a commodity. If *in vitro* fertilization is expensive, cloning will be worse.

Will humans be cloned for vanity? Someone will certainly try.

Will human clones have a soul? In my mind, they will be no different from an identical twin or a baby that results from *in vitro* fertilization. How a single fertilized egg splits in two to become two individuals is a similar mystery.

Does cloning threaten genetic diversity? Excessive cloning may indeed deplete the genetic diversity of an animal population, leaving the population susceptible to disease and other disasters. But most biologists are aware of these problems, and I would not expect this to be a major concern unless cloning were the only means available to continue a species.

If the technique is perfected in animals first, will this save the tragic loss of fetal life that resulted from the early human experimentation with *in vitro* fertilization? *In vitro* fertilization was perfected in humans before it was known how effective a procedure it would be. This resulted in many wasted human beings in the embryonic stages. The success rate is still only 1 in 5 to 1 in 10; normal fertilization and implantation success rates are 2-3 times that. While animal models will help, there will be unique aspects to human development that can only be known and overcome by direct human experimentation which disrespects the sanctity of human life.

This provides a means for lesbians to have a child. One supplies the nucleus and the other provides the egg. The egg does contain some unique genetic material in the mitochondria that are not contributed by sperm or nucleus. One cell from each donor would be fused together to create a new individual, though all the nuclear genetic material comes from one cell. Sue Bohlin has an upcoming program on homosexual myths including gay marriage. This is no longer marriage as it is currently understood, and the technological hoops that must be jumped through for any gay couple to have children should be a clear warning that something is wrong with the whole arrangement.

Are human clones unique individuals? Even identical twins manage to forge their own identity. The same would be true of clones. In fact, this may argue strongly against the usefulness of cloning since you can never reproduce all the life experiences that have molded a particular personality. The genes will be the same, but the environment and the spirit will not.

All together, I find the prospect of animal cloning potentially useful. But I wonder if the procedure is as perfectible as some hope, and may end up being an inefficient process to achieve the desired result. Human cloning is fraught with too many possible difficulties, from the waste of human fetal life during research and development to the commercializing of human babies (see <u>my previous cloning</u> <u>article</u>) with far too little potential advantage to individuals and society. What there is to learn about embryonic development through cloning experiments can be learned through animal experimentation. The cloning of adult human beings is an unnecessary and unethical practice that should be strongly discouraged if not banned altogether.

© 1997 Probe Ministries