“Do You Have More Information on Human Cloning?”

I am looking to inform my class on the steps to cloning a human and also the most recent experiments done in this field of work. I have read your articles, but is there any additional information you could provide me?

Below is the recent announcement by the first group to publicly say they are actively going to seek to clone a human. There is no published results from any laboratory anywhere in the world. The potato is just a little too hot yet. The story from the BBC may also provide some additional links for you.

The article confirms some of the scientific and ethical problems I have mentioned elsewhere.

Respectfully,

Ray Bohlin
Probe Ministries

Tuesday, 30 January, 2001, 17:08 GMT
Cloned human planned ‘by 2003’

http://news.bbc.co.uk/hi/english/sci/tech/newsid_1144000/1144694.stm

By BBC News Online’s Alex Kirby

A private consortium of scientists plans to clone a human being within the next two years.

The group says it will use the technique only for helping infertile couples with no other opportunity to become parents.

It says the technology will resemble that used to clone animals, and will be made widely available.

One member said the group hoped to produce the world’s first baby clone within 12 to 24 months.

It was founded by an Italian physician, Dr Severino Antinori, whose work includes trying to help post-menopausal women to become pregnant.

A spokesman for the group is Panos Zavos, professor of reproductive physiology at the University of Kentucky, US.

No alternative

He said it would “develop guidelines with which the technology cannot be indiscriminately applied for anybody who wants to clone themselves.”

As with animal cloning, he said, the technology would involve injecting genetic material from the father into the mother’s egg, which would then be implanted in her womb.

“The effort will be to assist couples that have no other alternatives to reproduce and want to have their own biological child, not somebody else’s eggs or sperm,” Professor Zavos said.

He said he believed human cloning was achievable. It could at first cost $50,000 or more, but he hoped that could come down to around the cost of in vitro fertilisation, about $10,000 to $20,000.

Professor Zavos said he was well aware of the ethical dimensions of the project.

“The world has to come to grips [with the fact] that the cloning technology is almost here,” he said. “The irony about it is that there are so many people that are attempting to do it, and they could be doing it even as we
speak in their garages.

“It is time for us to develop the package in a responsible manner, and make the package available to the world. I think I have faith in the world that they will handle it properly.”

‘Irresponsible’ plan

But the plans of Professor Zavos and his colleagues received an unenthusiastic response in the UK.

Dr Harry Griffin is assistant director of the Roslin Institute, Scotland, which successfully cloned Dolly the sheep.

He told BBC News Online: “It would be wholly irresponsible to try to clone a human being, given the present state of the technology.

“The success rate with animal cloning is about one to two per cent in the published results, and I think lower than that on average. I don’t know anyone working in this area who thinks the rate will easily be improved.

“There are many cases where the cloned animal dies late in pregnancy or soon after birth.

“The chances of success are so low it would be irresponsible to encourage people to think there’s a real prospect. The risks are too great for the woman, and of course for the child.

“I remain opposed to the idea of cloning human beings. Even if it were possible and safe—which it’s not—it wouldn’t be in the interest of the child to be a copy of its parent.”

Tom Horwood, of the Catholic Media Office in London, told BBC News Online: “A lot of our objections come down to questions of technique.

‘Morally abhorrent’

“But beyond that, cloning human beings is inconsistent with their dignity, and involves seeing them as a means, not an end.

“The scientists involved in the project are planning a conference in Rome to explain their plans.

“I don’t think you’ll start getting lots of papal pronouncements just because they’re meeting in Rome.

“The reaction in the Vatican will be the same as everywhere else—that the project is morally abhorrent and ethically very dubious.”


“Help Me Understand the Genetics of Skin Color”

Ray,

I’ve got a genetics question for you. A pastor friend posed the following for me, which he says is the argument of some creationists he knows. He sums up their argument this way:

1. Adam and Eve were the first parents of all the races.

2. Adam and Eve contained all the genetic information from which eventually all the races came.

3. From Adam to Noah, all descendants of Adam and Eve were probably all a mid-brown color since Adam and Eve were also mid-brown.

4. After the global flood and the tower of Babel incident, descendants of Noah separated into people groups according to their own languages and traveled to different parts of the world.

5. As different “people groups” were exposed to different environments, natural selection occurred resulting in certain genetic traits to be enhanced for adaptability (for example: darker skin pigmentation for environments with more intense sunlight due to the genetic “potential” to increase more melanin).

6. As the “people groups” were isolated and intermarried with each other with a certain group, they eventually lost certain genes that were not needed for adaptability. (That would explain, from this point of view, why African Negroes who move to different northern environments or European Whites who move down to Africa, do not change back to another color because over time they previously lost the genetic potential to do so.)

Ray, from your knowledge of genetics, does this hold water? Or is it speculation? Thanks.

Your pastor friend is essentially correct. This scenario as regards to skin color is emminently workable genetically. There are at least three and perhaps four genes involved in skin color and several alleles at each gene producing differing amounts of melanin. It would not take long for these to segregate out into different inbred populations creating true-breeding lines for particular skin color shades. I even discussed this back in the late 70s with my genetics professor and he saw no genetic problem with this scenario.

The only change I would make in the scenario would be to emphasize the critical role of the wives of Noah’s three sons. They are actually more important than Adam and Eve. Noah’s sons would most likely be very similar genetically so the major variation would need to originate with their wives since the world is repopulated from these three pairs. The full genetic range could easily be incorporated into these individuals. Adam and Eve would not necessarily need to possess the entire range of skin gene possibilities since there is some time for accumulation of mutations between them and Noah’s sons. With that said, since Adam and Eve would both possess two copies of each gene, that means a possible total of at least 4 different alleles at each gene and if there are 3 different genes, that means 12 different alleles which could be combined 144 different ways. This would seem more than adequate to accomodate the full range of human skin color.

Respectfully,

Ray Bohlin

Probe Ministries


Human Genome Project

Dr. Ray Bohlin takes a brief look at the accomplishment, purpose and consequence of the Human Genome Project.

Spanish flag This article is also available in Spanish.

What’s All the Fuss About the Human Genome Project?

In February of 2001, virtually every media outlet, whether TV news, newspapers, radio, Internet news services, or news magazines, was all worked up about the announcement of the completion of the Human Genome Project. In this article we will explore this monumental achievement and what it means for the future of medicine and our understanding of ourselves.

To appreciate this important accomplishment, we need to review a little basic genetics. It may actually astonish most adults just how much genetics the National Institutes of Health assumes we know about our genetic heritage. The educational video from the HGP includes a three-minute review of basic genetic processes like DNA packaging, transcription of DNA into message RNA, and the translation of message RNA into protein. It’s no exaggeration to say that when I played this short piece during a lecture for high school students and their parents, mom and dad were left in the dust.

Honestly, I did that intentionally; because we are only in the beginning stages of a genetic revolution that will transform the way we diagnose and treat disease and how we may even alter our genetic structure. These new technologies bring with them numerous ethical and moral dilemmas we have only begun to address and for which there may not be simple answers. If we don’t take the time to familiarize ourselves with genetic research and its implications, we risk responding out of fear and ignorance and potentially throwing away crucial medical advances.

I have contended for a long time that we can no longer afford to remain ignorant of genetic technologies. They simply harbor far too great a power for both tremendous good and tremendous evil. We must work hard to take every thought captive to Christ and see what there is of benefit and what avenues of research and application we need to avoid to preserve human freedom and dignity.

Well let’s talk about our genome, the sum total of all our genes. In most of the 100 trillion cells of our body are 46 chromosomes. These chromosomes are tightly coiled and packed strings of a remarkable molecule called DNA (Deoxyribonucleic Acid). DNA is a polymer, a repetitive sequence of four molecules, which I will only refer to by their one-letter abbreviations, A, G, C, and T. The human genome sequence is simply the sequence of these four molecules in DNA from all our chromosomes. If you laid out the DNA from all our chromosomes in each of our cells end to end, it would stretch six feet long.

A gene is a segment of DNA that contains the precise coding sequence for a protein. And proteins do all the real work in our cells. By looking at our completed sequence, it is predicted that our genome consists of 30,000 to 45,000 genes in each of our cells. So, now that we have the sequence, what does it mean? We’ll begin answering that question in the next section.

What Does the Human Genome Project Hope to Accomplish?

The National Institutes of Health in cooperation with several international research organizations began the HGP in 1990 in the U.S. There were four primary objectives among the many goals of the HGP{1}.

The first and primary goal of the HGP was to map and sequence the entire human genome. There is a critical and significant difference between a map and the sequence. There are over three billion letters, or base pairs, in the human genome, spread out over 23 pairs of chromosomes. Trying to locate a sequence of say 1,000 letters, the code for a large protein, is a one in a million task. Therefore, researchers needed a refined roadmap to the genome. The map entails particular sequences that can be used like signs on a road map. If the trait a scientist is studying always seems to be present with this marker, the gene involved is probably nearby. In 1995, a detailed map was published with over 15,000 markers, one for every 200,000 base pairs. This will aid greatly in associating genes with particular diseases. And now with the sequence nearly complete, with over 99% accuracy, determining the precise effect of this gene on disease will be even easier.

A second critical goal was to map and sequence the genomes of several important model organisms: specifically, the bacterium E. coli, yeast, the roundworm, fruit fly, and mouse. This information is helpful, because each of these organisms have been used for laboratory studies for decades. Being able to coordinate knowledge of their genomes with cellular and biological processes will certainly inform our study of the human genome and its various functions.

The third important objective of the HGP was to systemize and distribute the information it gathered. Any sequence over 2,000 base pairs is released within 24 hours. The sequence and map data is contained in publicly accessible databases on the Internet. The HGP has also been creating software and other tools for large-scale DNA analysis.

The fourth and final primary goal of the HGP was to study the ethical, legal, and social implications of genetic research. A full 5% of all funds appropriated for the HGP have been earmarked for these kinds of considerations. There are many concerns revolving around the use of genetic sequence data. Not the least of which are worries about ownership, patenting, access to personal sequence data by insurance companies, potential for job discrimination based on personal sequence data, and the prospects for genetic screening, therapy, and engineering. In the next section we’ll begin investigating how the HGP thinks this information can be used.

What are the Long Term Hopes for the HGP?

The completion of the sequence was announced jointly in February 2001 in the journals Nature{2} and Science{3}. Both Science and Nature have made these landmark issues available, without subscription, on their websites.

The importance of recognizing the sequence of a particular gene has three important ramifications.{4} The first is diagnosis. Over the last few years, single genes have been found leading to deafness and epilepsy. Numerous genes, however, will influence most diseases in complex ways. Recently, genetic influences have been found in many forms of hypertension, diabetes, obesity, heart disease, and arteriosclerosis{5}. Genetic analysis of cancer tumors may someday help determine the most effective drug therapy with the fewest side effects. Genetic diagnosis has the potential to more precisely prescribe treatments for many medical conditions.

Second, diagnosing ailments with more precision with genetics will also lead to more reliable predictions about the course of a disease. Genetic information about an individual’s cholesterol chemistry will aid in predicting the course of potential heart disease. Obtaining a genetic fingerprint of a cancerous tumor will provide information concerning its degree of malignancy. Third, more precise genetic information will also lead to the development of better strategies for prevention of disease.

Many more ailments in newborns can eventually be screened more specifically to avoid disorders later in life. Currently, babies in the U.S. and other countries are routinely screened for PKU, a metabolic disorder that prevents the breakdown of a specific amino acid found in proteins. This condition becomes toxic to the nervous system, but can be prevented and managed with appropriate diet. Without dietary changes, affected babies face extreme mental retardation. Hopefully, the number of conditions this type of screening applies to can be expanded.

Screening can also be done for adults, to see if they may be carriers of potential genetic conditions. Certain Jewish and Canadian populations regularly obtain voluntary screening for Tay-Sachs disease, a known child-killer. This information has been used to help make decisions about future marriage partners.

Perhaps the greatest benefit will come from what is called gene-based therapy. Understanding the molecular workings of genes and the proteins they encode will lead to more precise drug treatments. The more precise the drug treatment, the fewer and milder will be the side effects.

Actual gene therapy, replacing a defective gene with its normal counterpart, is still very experimental. There are still many hurdles to overcome involving how to deliver the gene to the proper cells, controlling where that gene is inserted into a chromosome, and how it is activated.

Not surprisingly, some have seen the human genome sequence as a vindication of Darwin. We’ll examine that contention next.

Did the Human Genome Sequence Vindicate Darwin?

Amid the controversy and exultation over the release of the near complete human genome sequence has been a not so quiet triumphal howling from evolutionary biologists. The similarity of many genes across boundaries of species, the seemingly messy patchwork nature of the genome, and the presence of numerous apparently useless repetitive and copied sequences all have been laid out for us as clear validations of evolution. Really!

If Darwin were alive today, he would be astounded and humbled by what we now understand about the human genome and the genomes of other organisms.

Let’s take a closer look at the claims of one bioethicist, Arthur Caplan{6}, who thought the major news story was missed. So let’s just pick a few of the more glaring statements to help us understand that little in his comments should be trusted.

First, Caplan says, “Eric Lander of the Whitehead Institute in Cambridge, Mass., said that if you look at our genome it is clear that evolution must make new genes from old parts.”

While it may be true that we can see some examples of shared sequences between genes, it is by no means true that we see wholesale evidence of gene duplication throughout the genome. According to one group of researchers,{7} less than 4,000 genes share even 30% of their sequences with other genes.

Over 25,000 genes, as much as 62% of the human genes mapped by the Human Genome Project, were unique, i.e., not likely the result of copying.

Second, Caplan says, “The core recipe of humanity carries clumps of genes that show we are descended from bacteria. There is no other way to explain the jerry-rigged nature of the genes that control key aspects of our development.”

Not everyone agrees. The complexity of the genome does not mean, necessarily, that it has been jerry-rigged by evolution. There is still so much we do not know. Caplan is speaking more out of ignorance and assumption than data. Listen to this comment from Gene Meyers, one of the principal geneticists from Celera Genomics, from a story in the San Francisco Chronicle:

‘What really astounds me is the architecture of life,’ he said. ‘The system is extremely complex. It’s like it was designed.’

My ears perked up. ‘Designed? Doesn’t that imply a designer, an intelligence, something more than the fortuitous bumping together of chemicals in the primordial slime?’

Myers thought before he replied. ‘There’s a huge intelligence there. I don’t see that as being unscientific. Others may, but not me.’{8}

Jerry-rigged? Hardly! Confusing at the moment? Certainly! But more likely to reveal hidden levels of complexity, rather than messy jerry-rigging.

It will take more than bluster to convince me that our genome is solely the result of evolution. The earmarks of design are clear, that is, if you have eyes to see.

What are the Challenges of the Human Genome Project?

In closing, I would like to address what are many people’s concerns about the potential for abuse of this information. While there is great potential for numerous positive uses of the human genome, many fear unintended consequences for human freedom and dignity.

Some are justifiably worried about the rush to patent human genes. The public consortium, through the National Institutes of Health, has made all its information freely available and intends to patent nothing. However, there are several patent requests pending on human genes from the time before the HGP was completed.

It is important to realize that these patents are not necessarily for the genes themselves. What the patent does protect is the holder’s right to priority to any products derived from using the sequence in research. With the full sequence fully published, this difficult question becomes even more muddled. No one is anxious for the courts to try its hand at settling the issue. Somehow companies will need some level of protection to provide new therapies based on genetic information without hindering the public confidence and health.

Another concern is the availability of information about individual genetic conditions. There are legitimate worries about employers using genetic information to discriminate over whom they will hire or when current employees will be laid off or forced into retirement. Upwards of 80-90% of Americans believe their genetic information should be private and obtained or accessed only with their permission. The same fears arise as to the legality of insurance companies using private genetic information to assess coverage and rates. A recent bill (June 29,2000) before Congress to address these very concerns was amended to the Health and Human Services appropriations bill, but was removed in committee. The bill will be reintroduced this session.{9} I would be very surprised if some level of privacy protection is not firmly in place by 2002.

Moreover, many are apprehensive about the general speed of discovery and the very real possibilities of genetic engineering creating a new class, the genetically enhanced. Certainly, there is cause for vigilance and a watchful eye. I have said many times that we can no longer afford to be ignorant of genetic technologies. And while I agree that the pace of progress could afford to slow down a little, let’s be careful not to throw the baby out with the bathwater.

After a series of lectures on genetic engineering and human cloning at a Christian high school, one student wrote me to say:

I am a senior, in an AP Biology class, and I find genetics absolutely fascinating. It’s both fascinating and scary at the same time. . . . [You have inspired me] to not be afraid of the world and science in particular, but to take on its challenge and trust God.

Amen to that!

Notes

1. “Genetics: The Future of Medicine,” NIH, Publication No. 00-4873, 2.
2. Nature, 409 (15 February, 2001), www.nature.com.
3. Science, 291 (16 February, 2001), www.sciencemag.org.
4. Genetics: The Future of Medicine, 9-11.
5. Kevin Davies, “After the genome: DNA and human disease,” Cell, 104 (Feb. 23, 2001), 465-467.
6. www.probe.org/did-the-human-genome-project-prove-that-darwin-was-right/.
7. Wen-Siung Li, Zhenglong Gu, Haidong Waing, and Anton Nekrutenko, “Evolutionary analyses of the human genome,” Nature, 409 (15 Feb 2001):847-849.
8. Tom Abate, “Human Genome Map Has Scientists Talking About the Divine – Surprisingly low number of genes raises big questions,” Monday, February 19, 2001, San Francisco Chronicle.
9. James M. Jeffords and Tom Daschle, “Political issues in the genomic era,” Science, 291 (16 February, 2001), 1249-1251.

© 2001 Probe Ministries International


Genetic Engineering – A Christian Scientist’s Perspective

Dr. Ray Bohlin examines the rapidly moving world of genetic engineering from a Christian worldview perspective. He explains that most genetic engineering attempts to make more efficient changes similar to those previously done through selective breeding and other conventional techniques.  However, those working in the field need to be aware of the ethical and religious issues that arise in this area of science.

What Is Genetic Engineering?

Our culture teeters on the edge of a steep and dangerous precipice. New technologies will soon allow us to change, radically and permanently, the world in which we live. Indeed, we will hold in our hands the capability of directly and purposefully changing who we are as human beings. The technology I am speaking of is genetic engineering.{1} Ethical and technical questions swirl around discussions of genetic engineering like the wall clouds of the eye of a hurricane. Many in society seem to be bracing themselves for the disappearance of the calm of the eye and the coming of the full force of a powerful and destructive combination of new plants and animals unleashed on an unsuspecting environment, with new and improved humans designed to succeed.

Before your alarm buttons go on overload, let me say that I hope to lend a reassuring voice with a dose of sober realism. Genetic technology will undoubtedly unleash great power to change our world forever, but should it, and will it? In this article I want to explore just a few of the technical and ethical questions we face as a society. The time to discuss these issues is now, while we still have time to think without simply reacting.

The phrase genetic engineering, unfortunately, often conjures up images of macabre experiments resulting in Frankenstein-like monsters and the cold-hearted use of genetic information to create new social classes depending on our genes, as in the 1997 film Gattaca.{2} However, genetic engineering can simply be defined as the manipulation or alteration of the genetic structure of a single cell or organism.

Sometimes the manipulation of an organism’s genome, the totality of all its genes, can simply refer to the project of identifying its complete DNA sequence in order to gain information for future study and potential alteration. The Human Genome Project is therefore, in a sense, a form of genetic engineering because the human genome must be broken up and manipulated in order to gain the desired information.

Ordinarily, genetic engineering refers to the direct addition, deletion, or intentional mutation of an organism’s DNA sequence to produce a desired effect. Knockout experiments in mice seek to determine the effects of eliminating a particular gene from the mouse genome. Recombinant DNA experiments usually take a gene found in one organism and place the gene into another organism. These animals can be of the same or different species.

Sometimes researchers will simply change the DNA sequence in a gene to study what effect the specific change has on the gene or its protein product. All of these alterations fall under the umbrella of genetic engineering. In this broad definition, genetic engineering is neither good nor evil. The nature of the experiments themselves will determine if they are moral or immoral.

Why Are There Genetic Illnesses?

The initial thrust of genetic research is the treatment and potential cure of genetic illnesses. Therefore, we must explore why genetic illnesses occur at all. “Why questions” within science usually occur on two levels and are notoriously difficult. The first level and usually the easier of the two are the scientific. The “why” is best changed to “how.” For our purposes this means, How do genetic illnesses arise? The second, more difficult question asks on a moral basis, Why do genetic illnesses occur?

The answer to the first question, How do genetic illnesses arise?, is simply, mutations. Mutations are mistakes in the DNA sequence. Sometimes a mutation is simply the substitution of one nucleotide for another.

Mutations can also result from a piece of DNA being deleted. This may cause one or more codons to disappear. In cystic fibrosis (CF), codon 508 out of 1,480 is missing, causing one amino acid to be removed from the resulting protein. This causes the severe respiratory and digestive problems of CF patients that are usually lethal before their 30th birthday.

So far, genes for more than 1,200 human disorders have been identified, which are found over all twenty-three pairs of human chromosomes. Some estimate that there may be as many as 3,000 to 4,000 human genetic disorders that are due to defects in a single gene. Most disorders, however, will be due to mutations in a host of genes.

The moral question is perhaps not so difficult in its answer, but in our acceptance of the answer. Mutations exist as a result of the Fall. We know the serpent was cursed, Eve was cursed, and Adam was cursed (Gen. 3:14-19). But Romans 8:18-22 also tells us that all creation was subjected to futility, groans and suffers, and eagerly awaits the revealing of the sons of God so it may be set free from its slavery to corruption. This world is not as God intended.

Asking why someone suffers from a genetic disease is no different than asking why someone was killed in a traffic accident when others walked away. We know our suffering is temporary. We know that God will somehow work it all out for good (Rom. 8:28). But in 2 Corinthians Paul tells us we suffer so we can comfort those who suffer after us (1:4), so other sufferers will know they are not alone (1:6), and, principally, we suffer so we will trust in God and not ourselves (1:9).

Part of the Christian mission has always been to alleviate suffering where possible. While Jesus’ miracles clearly were part of fulfilled prophecy, they were also about relief from suffering. Genetic engineering, while possessing a power that can be used for evil, which we will discuss, also at least has the potential to relieve the suffering from, if not even cure, genetic disease.

Could Changing Genetic Material Produce a Dangerous Superbug?

One concern that many people have about genetic engineering is the possibility of unintentionally creating a superbug or a damaging plant or animal whose destructive nature is only discovered after the fact. After all, our knowledge of the workings of genes and proteins is still growing. We hear constantly how complex everything is. What makes us think we can tinker with this incredible biological reservoir of information without making some incredible blunder from which there is no turning back?

When genetic engineering in bacteria was first discovered and introduced (Recombinant DNA technology), many scientists had this very fear. This was partially the reason for the self-imposed moratorium and four levels of containment in the early 1970s. But geneticists and molecular biologists found that dangerous, unintentional consequences were virtually nonexistent. Enforcement of the guidelines eventually relaxed and soon became outdated and ignored. What this means is that researchers were quite convinced that transferring DNA of known sequence and function into bacterial chromosomes and plasmids did not result in unforeseen consequences. The procedure became routine and straightforward.

This does not mean that someone, somewhere, won’t use biotechnology to produce a superbug intentionally. Certainly this technology can be used to produce even more powerful and resistant agents of biological warfare. Some even speculated that HIV (human immunodeficiency virus), the virus that causes AIDS, was intentionally produced. Though this hypothesis has been successfully refuted, the prospect remains that DNA recombinant technology has opened up a new field that can be used for evil.

However, we must be clear that this is not the fault of the technology itself. It is entirely human to shrink with fear away from things that we don’t understand. The first predictable reaction of tribal societies when faced with modern technology was to cower in fear. Something dreadful was about to descend upon them. Usually this didn’t happen and, with some education and familiarity, fear dissipated. But only human agents alone can make evil choices. Fire will heat our homes and cook our food, but it can also kill indiscriminately in the hands of an arsonist. But fire itself is not evil.

What should concern us more than the advent of biotechnology is the growing popularity of a totally secular and naturalistic worldview. Naturalism contends that humans are just complicated animals. The end result of this assumption is that ethics becomes an exercise in simply determining what works, not what is right.

Biotechnology is powerful, indeed, but we cannot put the genie back in the bottle. Therefore we must engage the discussion as to how this technology can be used to cure disease and not become another snare to degrade and dehumanize people’s lives.

Are We Playing God by Creating Organisms That Never Existed Before?

Unfortunately, the concept of playing God means different things to different people.{3} For some it may have nothing to do with God at all. They are simply expressing awe and wonder at the power that humans can wield over nature.

For some Christians, however, the notion of playing God carries a pietistic view of God’s realm of activity versus that of the human race. In this context, playing God means performing tasks that are reserved for God and God alone. If this is what genetic technology does, then the concerns about playing God are justified. But what is often being reflected in this perspective is that God acts where we are ignorant and it should stay that way.

What is really at stake is fear, fear of what we may learn, fear of what new responsibility this new knowledge will put on our shoulders, and fear that this new knowledge will be used to harm us and not for the common good. The point was made that technology itself is not evil. Any technology can be used to further God’s purposes or hinder them. People make those decisions, not technology.

By the very fact that we are called to be stewards of God’s creation (Gen. 1:26-28), we need to expand our knowledge of what God has made in order to better rule over His creation. Part of being made in God’s image is our creativity. In this sense we “play God” by imitating Him. Our works of art, buildings, management of natural parks, and care for the poor, sick, and disadvantaged all imitate God for the good of His creation.

But we are still creating new creatures that did not exist before. Isn’t God the only Creator in that sense? We seldom realize that we are hard-pressed to find in nature today the ancestors of nearly all the plants and animals we use for food or service. Our current varieties of corn, wheat, flowers, cattle, dogs, horses, etc., bear little resemblance to the original stock in nature. That is because we have selected and manipulated them over the millennia for our own purposes. We have already created animals and plants that never existed before. Genetic technology has greatly increased the specificity and power of our abilities, but the nature of what we can do is the same as before.

If we are to play God in the sense of imitating Him as we apply the truth of being created in His image and in exercising our appointment as stewards over all He has made, then we need to do so with humility and compassion. Our creative abilities should be used to enhance the condition of men and women as we struggle in a fallen world. Genetic technologies can and should be used to help alleviate or even cure the effects of genetic disease.

Is It Wrong to Combine Genes from Different Species?

Have you ever wondered if we should be transferring genes from one species to another at all? Does this in itself violate some ethical principle? One gene does not define a species. Bacteria are composed of thousands of genes and it is estimated that humans possess as many as 100,000 genes. Therefore, transferring one gene from one organism to another does not create a hybrid in the traditional sense. Genes, remember, are composed of DNA. DNA is a molecule; it is not living in and of itself.

If the idea of adding something foreign to an organism is troublesome, just realize that we do this all the time when we take antibiotics, over the counter pain medications, and other synthetic medications. Our bodies would never come across most of these substances in nature.

What is different is that with genetic engineering, we have added something to a cell or organism that will change the composition of that cell or organism, possibly for as long as it lives, and is potentially passed on to future generations. It is reasonable to ask if we have the wisdom even to try to make these kinds of changes. No doubt, genetic technology provides a power never before possessed by human beings: to design intentionally or create a new variety of organism by altering its genetic structure.

Once again, the issues are, Which genes are actually being transferred? and, For what purpose? These questions, asked case by case, should rule our choices, not the inherent legitimacy of genetic engineering itself. Creating crops internally resistant to disease, particularly to help developing countries better feed their people, is a goal worthy of God’s image-bearers.

However, intentionally manipulating the gene of a known pathogenic and deadly bacterium with the expressed intent of creating a biological weapon that is untreatable and incurable is a hideous evil. Kerby Anderson also warns that we need to consider the extent that genetic manipulation may cross over barriers God instituted in the created kinds.{4} If God felt it important to create boundaries of reproduction that his creatures were to stay within, we ought not cross over them ourselves (Gen. 1:11, 12, 21, 24, 25).

It is certainly possible for genetically modified organisms created for agricultural and medical purposes to develop in ways not planned or foreseen. Therefore, it is necessary that proper and extensive tests be performed to assure, as much as possible, that no unnecessary harm will come to the environment or to humans. As vague as this prescription is, it only serves to reinforce the necessity of further education on the part of everyone to ensure that this powerful technology is used responsibly. We simply cannot afford to be ignorant of genetic issues and technologies and expect to contribute to the necessary discussion that lies ahead.

Notes

1. An excellent resource for Christians on this topic is Genetic Engineering: A Christian Response, Timothy J. Demy and Gary P. Stewart, eds. (Grand Rapids, MI: Kregel Publications, 1999)
2. Gattaca, a film by Andrew Niccol, A Jersey Films production, distributed by Columbia Pictures, 1997.
3. Allen D. Verhey, “Playing God,” in Genetic Ethics: Do the Ends Justify the Genes? (Grand Rapids, MI: Eerdmans Publ. Co., 1997), 60-74.
4. J. Kerby Anderson, “The Ethics of Genetic Engineering and Artificial Reproduction,” in Genetic Engineering: A Christian Response, Timothy J. Demy and Gary P. Stewart.

©2000 Probe Ministries


Technological Challenges of the 21st Century

We live in historic times. And we will face new challenges as we enter the 21st century, especially in the area of technology. The fields of biotechnology and information technology have the capacity to change the social landscape and even alter the way we make ethical decisions. These are not challenges for the faint-hearted. We must bring a tough- minded Christianity into the 21st century.

We are reminded in 1 Chronicles 12:32 (NIV) that the men of Issachar “understood the times and knew what Israel should do.” Likewise, we must understand our times and know what we should do. New ethical challenges await us as we consider the moral issues of our day and begin to analyze them from a biblical perspective.

We should also enter into the task with humility. Over a hundred years ago, Charles Duell, Director of the U.S. Patent Office, was ready to close his office down because he believed that “Everything that can be invented has been invented.”{1} We should not make the mistake of thinking that we can accurately see into the future. However, we can analyze trends and look at new inventions and begin to see the implications of these remarkable changes. Our challenge will always be to apply the timeless truths of Scripture to the quickly changing world around us.

How should Christians analyze the technological changes taking place? First we must begin by developing a theology of technology.

Theology of Technology

Technology is really nothing more than the systematic modification of the environment for human ends. This might be a process or activity that extends or enhances a human function. A telescope extends man’s visual perception. A tractor extends one’s physical ability. A computer extends a person’s ability to calculate.

The biblical mandate for developing and using technology is stated in Genesis 1:28. God gave mankind dominion over the land, and we are obliged to use and manage these resources wisely in serving the Lord. God’s ideal was not to have a world composed exclusively of primitive areas. Before the Fall (Gen. 2:15) Adam was to cultivate and keep the Garden of Eden. After the Fall the same command pertains to the application of technology to this fallen world, a world that “groans” in travail (Rom. 8:22). Technology can benefit mankind in exercising proper dominion, and thus remove some of the effects of the Fall (such as curing disease, breeding livestock, or growing better crops).

Technology is neither good or evil. The worldview behind the particular technology determines its value. In the Old Testament, technology was used both for good (e.g., the building of the ark, Gen. 6) and for evil (e.g., the building of the Tower of Babel, Gen. 11). Therefore, the focus should not be so much on the technology itself as on the philosophical motivation behind its use. Here are three important principles that should be considered.

First, technology should be seen as a tool, not as an end in itself. There is nothing sacred about technology. Unfortunately, Western culture tends to rely on it more than is appropriate. If a computer, for example, proves a particular point, people have a greater tendency to believe it than if the answer was a well-reasoned conclusion given by a person. If a machine can do the job, employers are prone to mechanize, even if human labor does a better or more creative job. Often our society unconsciously places machines over man. Humans become servants to machines rather than the other way around.

There is a tendency to look to science and engineering to solve problems that really may be due to human sinfulness (wars, prejudice, greed), the fallenness of the world (death, disease), or God’s curse on Adam (finite resources). In Western culture especially, we tend to believe that technology will save us from our problems and thus we use technology as a substitute for God. Christians must not fall into this trap, but instead must exhibit their ultimate dependence on God. Christians must also differentiate between problems that demand a technological solution and ones that can be remedied by a social or spiritual one.

Second, technology should be applied in different ways, according to specific instructions. For example, there are distinctions between man and animal that, because we are created in God’s image (Gen. 1:26-27), call for different applications of medical science. Using artificial insemination to improve the genetic fitness of livestock does not justify using it on human beings. Christians should resist the idea that just because we can do something, we should do it. Technological ability does not grant moral permission.

Third, ethics, rather than technology, must determine the direction of our society. Jacques Ellul has expressed the concern that technology moves society instead of vice versa.{2} Our society today seems all too motivated by a technological imperative in our culture. The technological ability to do something is not the same as a moral imperative to do it. Technology should not determine ethics.

Though scientists may possess the technological ability to be gods, they nevertheless lack the capacity to act like gods. Too often, man has tried to use technology to become God. He uses it to work out his own physical salvation, to enhance his own development, or even to attempt to create life. Christians who take seriously human fallenness will humbly admit that we often do not know enough about God’s creation to use technology wisely. The reality of human sinfulness means that society should be careful to prevent the use of technology for greed and exploitation.

Technology’s fruits can be both sweet and bitter. C. S. Lewis writes in the Abolition of Man, “From this point of view, what we call Man’s power over Nature turns out to be power exercised by some men over men with Nature as its instrument. . . . There neither is nor can be any simple increase of power on Man’s side. Each new power won by man is a power over man as well. Each advance leaves him weaker as well as stronger. In every victory, besides being the general who triumphs, he is also the prisoner who follows the triumphal car.”{3}

Christians must bring strong biblical critique to each technological advance and analyze its impact. The goal should be to liberate the positive effects of technology while restraining negative effects by setting up appropriate constraints against abuse.

The Challenge of Biotechnology

The age of biotechnology has arrived. For the first time in human history it is possible to completely redesign existing organisms, including man, and to direct the genetic and reproductive constitution of every living thing. Scientists are no longer limited to breeding and cross-pollination. Powerful genetic tools allow us to change genetic structure at the microscopic level and bypass the normal processes of reproduction.

For the first time in human history it is also possible to make multiple copies of any existing organism or of certain sections of its genetic structure. This ability to clone existing organisms or their genes gives scientists a powerful tool to reproduce helpful and useful genetic material within a population.

Scientists are also developing techniques to treat and cure genetic diseases through genetic surgery and genetic therapy. They can already identify genetic sequences that are defective, and soon scientists will be able to replace these defects with properly functioning genes.

Gene splicing (known as recombinant DNA technology) is fundamentally different from other forms of genetic breeding used in the past. Breeding programs work on existing arrays of genetic variability in a species, isolating specific genetic traits through selective breeding. Scientists using gene splicing can essentially “stack” the deck or even produce an entirely new deck of genetic “cards.”

But this powerful ability to change the genetic deck of cards also raises substantial scientific concerns that some “sleight-of-hand” would produce dangerous consequences. Ethan Singer said, “Those who are powerful in society will do the shuffling; their genes will be shuffled in one direction, while the genes of the rest of us will get shuffled in another.”{4} Also there is the concern that a reshuffled deck of genes might create an Andromeda strain similar to the one envisioned by Michael Crichton is his book by the same title.{5} A microorganism might inadvertently be given the genetic structure for some pathogen for which there is no antidote or vaccine.

The potential benefits of gene splicing are significant. First, the technology can be used to produce medically important substances. The list of these substances is quite large and would include insulin, interferon, and human growth hormone. The technology also has great application in the field of immunology. In order to protect organisms from viral disease, doctors must inject a killed or attenuated virus. Scientists can use the technology to disable a toxin gene, thus producing a viral substance that triggers production of antibodies without the possibility of producing the disease.

A second benefit is in the field of agriculture. This technology can improve the genetic fitness of various plant species. Basic research using this technology could increase the efficiency of photosynthesis, increase plant resistance (to salinity, to drought, to viruses), and reduce a plant’s demand for nitrogen fertilizer.

Third, gene splicing can aid industrial and environmental processes. Industries that manufacture drugs, plastics, industrial chemicals, vitamins, and cheese will benefit from this technology. Also scientists have begun to develop organisms that can clean up oil spills or toxic wastes.

This last benefit, however, also raises one of the greatest scientific concerns over the use of biotechnology. The escape (or even intentional release) of a genetically engineered organism might wreak havoc on the environment. Scientists have created microorganisms that dissolve oil spills or reduce frost on plants. Critics of gene splicing fear that radically altered organisms could occupy new ecological niches, destroy existing ecosystems, or drive certain species to extinction.

A significant question is whether life should be patented at all. Most religious leaders say no. A 1995 gathering of religious leaders representing virtually every major religious tradition spoke out against the patenting of genetically engineered substances. They argued that life is the creation of God, not humans, and should not be patented as human inventions.{6}

The broader theological question is whether genetic engineering should be used and, if permitted, how it should be used. The natural reaction for many in society is to reject new forms of technology because they are dangerous. Christians, however, should take into account God’s command to humankind in the cultural mandate (Gen. 1:28). Christians should avoid the reflex reaction that scientists should not tinker with life; instead Christians should consider how this technology should be used responsibly.

One key issue is the worldview behind most scientific research. Modern science rests on an evolutionary assumption. Many scientists assume that life on this planet is the result of millions of years of a chance evolutionary process. Therefore they conclude that intelligent scientists can do a better job of directing the evolutionary process than nature can do by chance. Even evolutionary scientists warn of this potential danger. Ethan Singer believes that scientists will “verify a few predictions, and then gradually forget that knowing something isn’t the same as knowing everything. . . . At each stage we will get a little cockier, a little surer we know all the possibilities.”{7}

In essence biotechnology gives scientists the tools they have always wanted to drive the evolutionary spiral higher and higher. Julian Huxley looked forward to the day in which scientists could fill the “position of business manager for the cosmic process of evolution.”{8} Certainly this technology enables scientists to create new forms of life and alter existing forms in ways that have been impossible until now.

How should Christians respond? They should humbly acknowledge that God is the sovereign Creator and that man has finite knowledge. Genetic engineering gives scientists the technological ability to be gods, but they lack the wisdom, knowledge, and moral capacity to act like God.

Even evolutionary scientists who deny the existence of God and believe that all life is the result of an impersonal evolutionary process express concern about the potential dangers of this technology. Erwin Chargaff asked, “Have we the right to counteract, irreversibly, the evolutionary wisdom of millions of years, in order to satisfy the ambition and curiosity of a few scientists?”{9} His answer is no. The Christian’s answer should also be the same when we realize that God is the Creator of life. We do not have the right to “rewrite the fifth day of creation.”{10}

What is the place for genetic engineering within a biblical framework? The answer to that question can be found by distinguishing between two types of research. The first could be called genetic repair. This research attempts to remove genetic defects and develop techniques that will provide treatments for existing diseases. Applications would include various forms of genetic therapy and genetic surgery as well as modifications of existing microorganisms to produce beneficial results.

The Human Genome Project has been able to pinpoint the location and sequence of the approximately 100,000 human genes.{11} Further advances in biotechnology will allow scientists to repair these defective sequences and eventually remove these genetic diseases from our population.

Genetic disease is not part of God’s plan for the world. It is the result of the Fall (Gen. 3). Christians can apply technology to fight these evils without being accused of fighting against God’s will.{12} Genetic engineering can and should be used to treat and cure genetic diseases.

A second type of research is the creation of new forms of life. While minor modifications of existing organisms may be permissible, Christians should be concerned about the large-scale production of novel life forms. That potential impact on the environment and on mankind could be considerable. Science is replete with examples of what can happen when an existing organism is introduced into a new environment (e.g., the rabbit into Australia, the rat to Hawaii, or the gypsy moth in the United States). One can only imagine the potential devastation that could occur when a newly created organism is introduced into a new environment.

God created plants and animals as “kinds” (Gen. 1:24). While there is minor variability within these created kinds, there are built-in barriers between these created kinds. Redesigning creatures of any kind cannot be predicted the same way new elements on the periodic chart can be predicted for properties even before they are discovered. Recombinant DNA technology offers great promise in treating genetic disease, but Christians should also be vigilant. While this technology should be used to repair genetic defects, it should not be used to confer the role of creator on scientists.

A related issue in the field of biotechnology is human cloning. It appears that the cloning of a human being will no doubt take place some time in the future since many other mammals have been cloned. Proponents of human cloning argue that it would be a worthwhile scientific endeavor for at least three reasons. First, cloning could be used to produce spare parts. The clone would be genetically identical to the original person, so that a donated organ would not be rejected by the immune system. Second, they argue that cloning might be a way to replace a lost child. A dying infant or child could be cloned so that a couple would replace the child with a genetically identical child. Third, cloning could produce biological immortality. One woman approached scientists in order to clone her deceased father and offered to carry the cloned baby to term herself.{13}

While cloning of various organisms may be permissible, cloning a human being raises significant questions beginning with the issue of the sanctity of life. Human beings are created in the image of God (Gen. 1:2728) and therefore differ from animals. Human cloning would certainly threaten the sanctity of human life at a number of levels. First, cloning is an inefficient process of procreation as shown in cloning of a sheep. Second, cloning would no doubt produce genetic accidents. Previous experiments with frogs produced numerous embryos that did not survive, and many of those that did survive developed into grotesque monsters. Third, researchers often clone human embryos for various experiments. Although the National Bioethics Advisory Commission did ban cloning of human beings, it permitted the cloning of human embryos for research. Since these embryos are ultimately destroyed, this research raises the same pro-life concerns discussed in the chapter on abortion.

Cloning represents a tampering with the reproductive process at the most basic level. Cloning a human being certainly strays substantially from God’s intended procedure of a man and woman producing children within the bounds of matrimony (Gen. 2:24). All sorts of bizarre scenarios can be envisioned. Some homosexual advocates argue that cloning would be an ideal way for homosexual men to reproduce themselves.

Although this would be an alternative form of reproduction, it is reasonable to believe that human clones would still be fully human. For example, some people wonder if a clone would have a soul since this would be such a diversion from God’s intended process of procreation. A traducian view of the origin of the soul, where a person receives both body and soul from his parents rather than an act of special creation by God, would imply that a cloned human being would have a soul. In a sense a clone would be no different from an identical twin.

Human cloning, like other forms of genetic engineering, could be used to usher in a “brave new world.” James Bonner says “there is nothing to prevent us from taking a thousand [cells]. We could grow any desired number of genetically identical people from individuals who have desirable characteristics.”{14} Such a vision conjures up images of Alphas, Betas, Gammas, and Deltas from Aldous Huxley’s book Brave New World and provides a dismal contrast to God’s creation of each individual as unique.

Each person contributes to both the unity and diversity of humanity. This is perhaps best expressed by the Jewish Midrash: “For a man stamps many coins in one mold and they are all alike; but the King who is king over all kings, the Holy One blessed be he, stamped every man in the mold of the first man, yet not one of them resembles his fellow.”{15} Christians should reject future research plans to clone a human being and should reject using cloning as an alternative means of reproduction.

The Challenge of Information Technology

The information revolution is the latest technological advance Christians must consider. The shift to computers and an information-based society has been swift as well as spectacular. The first electronic digital computer, ENIAC, weighed thirty tons, had 18,000 vacuum tubes, and occupied a space as large as a boxcar.{16} Less than forty years later, many hand-held calculators had comparable computing power for a few dollars. Today most people have a computer on their desk with more computing power than engineers could imagine just a few years ago.

The impact of computers on our society was probably best seen when in 1982 Time magazine picked the computer as its “Man of the Year”–actually listing it as “Machine of the Year.”{17} It is hard to imagine a picture of the Spirit of St. Louis or an Apollo lander on the magazine cover under a banner “Machine of the Year.” This perhaps shows how influential the computer has become in our society.

The computer has become helpful in managing knowledge at a time when the amount of information is expanding exponentially. The information stored in the world’s libraries and computers doubles every eight years.{18} In a sense the computer age and the information age seem to go hand in hand.

The rapid development and deployment of computing power however has also raised some significant social and moral questions. People in this society need to think clearly about these issues, but often ignore them or become confused.

One key issue is computer crime. In a sense computer fraud is merely a new field with old problems. Computer crimes are often nothing more than fraud, larceny, and embezzlement carried out by more sophisticated means. The crimes usually involve changing address, records, or files. In short, they are old-fashioned crimes using high technology.

Another concern arises from the centralization of information. Governmental agencies, banks, and businesses use computers to collect information on its citizens and customers. For example, it is estimated that the federal government has on average about fifteen files on each American.{19} Nothing is inherently wrong with collecting information if the information can be kept confidential and is not used for immoral actions. Unfortunately this is often difficult to guarantee.

In an information-based society, the centralization of information can be as dangerous as the centralization of power. Given sinful man in a fallen world, we should be concerned about the collection and manipulation of vast amounts of personal information.

In the past, centralized information processing was used for persecution. When Adolf Hitler’s Gestapo began rounding up millions of Jews, information about their religious affiliation was stored in shoe boxes. U.S. Census Bureau punch cards were used to round up Japanese Americans living on the West Coast at the beginning of World War II.{20} Modern technology makes this task much easier. Governmental agencies routinely collect information about citizens’ ethnic origin, race, religion, gross income, and even political preference.

Moreover, the problem it not limited to governmental agencies. Many banking systems, for example, utilize electronic funds-transfer systems. Plans to link these systems together into a national system could also provide a means of tracking the actions of citizens. A centralized banking network could fulfill nearly every information need a malevolent dictator might have. This is not to say that such a thing will happen. It does mean, however, that societies that want to monitor their citizens will be able to do so more efficiently with computer technology.

A related problem arises from the confidentiality of computer records. Computer records can be abused like any other system. Reputations built up over a lifetime can be ruined by computer errors and often there is little recourse for the victim. Congress passed the 1974 Privacy Act which allows citizens to find out what records federal bureaucracies have on them and to correct any errors.{21} But more legislation is needed than this particular act.

The proliferation of computers has presented another set of social and moral concerns. In the recent past most of that information was centralized and required the expertise of the “high priests of FORTRAN” to utilize it. Now most people have access to information because of increasing numbers of personal computers and increased access to information through the Internet. This access to information will have many interesting sociological ramifications, and it is also creating a set of troubling ethical questions. The proliferation of computers that can tie into other computers provides more opportunities for computerized crime.

The news media frequently carry reports about computer “hackers” who have been able to gain access to confidential computer systems and obtain or interfere with the data banks. Although these were supposed to be secure systems, enterprising computer hackers broke in anyway. In many cases this merely involved curious teenagers. Nevertheless computer hacking has become a developing area of crime. Criminals might use computer access to forge documents, change records, and draft checks. They can even use computers for blackmail by holding files for ransom and threatening to destroy them if their demands are not met. Unless better methods of security are found, professional criminals will begin to crack computer security codes and gain quick access into sensitive files.

As with most technological breakthroughs, engineers have outrun lawmakers. Computer deployment has created a number of legal questions. First, there is the problem of establishing penalties of computer crime. Typically, intellectual property has a different status in our criminal justice system. Legal scholars should evaluate the notion that ideas and information need not be protected in the same way as property. Legislators need to enact computer information protection laws that will deter criminals, or even curious computer hackers, from breaking into confidential records.

A second legal problem arises from the question of jurisdiction. Telecommunications allows information to be shared across state and even national borders. Few federal statutes govern this area and less than half the states have laws dealing with information abuse.

Enforcement will also be a problem for several reasons. One reason is the previously stated problem of jurisdiction. Another is that police departments rarely train their personnel in computer abuse and fraud. A third reason is lack of personnel. Computers are nearly as ubiquitous as telephones or photocopiers.

Computer fraud also raises questions about the role of insurance companies. How do companies insure an electronic asset? What value does computer information have? These questions also need to be addressed in the future.

Technology and Human Nature

These new technologies will also challenge our views of human nature. Already medical technology is challenging our views of what it means to be human. A key question in the abortion debate is, When does human life begin? Is an embryo human? What about a developing fetus? Although the Bible provides answers to these questions, society often takes its cue from pronouncements that do not square with biblical truth.

Biotechnology raises yet another set of questions. Is a frozen embryo human and deserving of a right to life? Is a clone human? Would a clone have a soul? These and many more questions will have to be answered. Although the Bible doesn’t directly address such issues as genetically engineered humans or clones, key biblical passages (Ps. 139, Ps. 51:5) certainly seem to teach that an embryo is a human created in the image of God.

Information technology also raises questions about human nature in an unexpected way. Researchers believe that as computer technology advances, we will begin to analyze the human mind in physical terms. In The Society of Mind, Marvin Minsky, professor at the Massachusetts Institute of Technology, says that “the mind, the soul, the self, are not a singly ghostly entity but a society of agents, deeply integrated, yet each one rather mindless on its own.”{22} He dreams of being able ultimately to reduce mind (and therefore human nature) to natural mechanism. Obviously this is not an empirical statement, but a metaphysical one that attempts to reduce everything (including mind) to matter.

Will we some day elevate computers to the level of humanity? One article asked the question, Would an Intelligent Computer Have a “Right to Life?”{23} Granting computer rights might be something society might consider since many are already willing to grant certain rights to animals.

In a sense the question is whether an intelligent computer would have a soul and therefore access to fundamental human rights. As bizarre as the question may sound, it was no doubt inevitable. When 17th century philosopher Gottfried Wilhelm von Leibniz first described a thinking machine, he was careful to point out that this machine would not have a soul–fearful perhaps of reaction from the church. Already scientists predict that computer intelligence will create “an intelligence beyond man’s” and provide wonderful new capabilities.{25} One of the great challenges in the future will be how to manage new computing power that will outstrip human intelligence.

Once again this is a challenge for Christians in the 21 st century. Human beings are more than just proteins and nucleic acids. Human being are more than bits and bytes. We are created in the image of God and therefore have a spiritual dimension. Perhaps this must be our central message to a world enamored with technology: human beings are created in the image of God and must be treated with dignity and respect.

Notes

1. Memo from Charles H. Duell, Director of the U.S. Patent Office, 1899.

2. Jacques Ellul, The Technological Society (New York: Vintage, 1964).

3. C. S. Lewis, The Abolition of Man (New York: Macmillan, 1947), 6869, 71 (italics his).

4. Ethan Singer, cited in Nicholas Wade, “Gene Splicing: Congress Starts Framing Law for Research,” Science, 1 April 1977, 39.

5. Michael Crichton, The Andromeda Strain (New York: Dell, 1969).

6. Kenneth Woodward, “Thou Shalt Not Patent!” Newsweek, 29 May 1995, 68.

7. Testimony by Ethan Singer before the Subcommittee on Health and the Environment, House Committee on Interstate and Foreign Commerce, Hearings, 15 March 1977, 79.

8. Julian Huxley, cited in Joseph Fletcher, The Ethics of Genetic Control (Garden City, NY: Anchor, 1974), 8.

9. Erwin Chargaff, cited in George Wald, “The Case against Genetic Engineering,” The Sciences, May 1976, 10.

10. Nancy McCann, “The DNA Maelstrom: Science and Industry Rewrite the Fifth Day of Creation,” Sojourners, May 1977, 2326.

11. Philip Elmer-Dewitt, “The Genetic Revolution,” Time, 17 January 1994, 49.

12. Skeptics sometimes argue that fighting disease is the same as fighting against God’s will. Albert Camus poses this dilemma for Dr. Reux in The Plague. Christians should follow the cultural mandate (Gen. 1:28) and use genetic technology to treat and cure genetic disease.

13. Sharon Begley, “Little Lamb, Who Made Thee?” Newsweek, 10 March 1997, 55.

14. James Bonner, quoted in Los Angeles Times, 17 May 1971, 1.

15. N. N. Glazer, Hammer on the Rock: A Short Midrash Reader (New York: Schocken, 1962), 15.

16. Philip Elmer-De-Witt, “A Birthday Party for ENIAC,” Time, 24 February 1986, 63.

17. “Machine of the Year,” Time, 3 January 1983, 1324.

18. “Harper’s Index,” Harper’s, October 1984, 9.

19. Ted Gest, “Who Is Watching You?” U.S. News and World Report, 12 July 1982, 35.

20. David Burnham, The Rise of the Computer State (New York: Random House, 1983).

21. Martha Farnsworth Riche, “The Rising Tide of Privacy Laws,” American Demographics, March 1990, 24.

22. Richard Lipkin, “Making Machines in Mind’s Image,” Insight, 15 February 1988, 812.

23. Robert Mueller and Erik Mueller, “Would an Intelligent Computer Have a ‘Right to Life?’” Creative Computing, August 1983, 14961.

24. Danny Hillis, “Can They Feel Your Pain?” Newsweek, 5 May 1997, 57.

25. Robert Jastrow, “Toward an Intelligence beyond Man’s,” Time, 20 February 1978, 59.

©2000 Probe Ministries.


Cloning and Genetics: The Brave New World Closes In

Is Dolly Really a Clone?

When the creation of Dolly, the first mammal cloned from adult cells, was first announced in February of 1997 there was a storm of publicity and controversy. While many wondered about the purpose of animal cloning and the possibilities such a success held for further animal applications, others were more concerned about the possible application to human beings. If we can clone sheep, can we clone humans? Should we clone humans? Why should we clone humans? Should humans be cloned to provide a baby for childless, infertile couples? Should we clone humans for embryo research? Should we clone humans to make extra copies of people with good genes? Would clones have a soul? While I answered these and other questions about human cloning in my article Can Humans Be Cloned Like Sheep? in retrospect, there was one question that was virtually ignored at the outset: Was Dolly a true clone?

Looking back, this appears to be a legitimate question that should have been more obvious. After all, Dolly was the only success amid 276 failures. There were 277 cell fusions made, with only 29 growing as embryos. All 29 were implanted into 13 ewes with only one pregnancy and one live birth. Dolly really beat the odds. There was also the fact that Dolly was not cloned from a currently living adult. Dolly’s older twin had been dead for several years. Some of her tissues were harvested and kept frozen in the lab, so there was no live animal with which to compare Dolly.

Dolly’s authenticity was formally challenged in a January 30, 1998 letter to the editor of the journal Science{1}. The authors offered seven reasons for skepticism concerning Dolly’s identity as a clone of an adult cell. Among them was the fact that Dolly was alone and not yet joined by another adult clone from the Roslin Institute or any other laboratory. Also, though omitted by the original paper, it had been learned that the original sheep had been pregnant when the tissues were removed, raising the possibility that Dolly was cloned from a fetal cell rather than an adult cell. In addition, the questioning scientists called for additional genetic tests to establish Dolly’s identity.

Although Ian Wilmut, the Scottish scientist who is Dolly’s co-creator, admitted that Dolly might be a one in a million fluke, he and others were busy performing genetic tests to fully establish that Dolly was an authentic clone from an adult cell. Other labs had so far failed to duplicate Wilmut’s success after hundreds of tries. This may not be so unusual since Dolly was the only success out of 300 nuclear transfers and the real odds may be as high as one in 1000. There was no way to know for sure. Wilmut may have gotten lucky indeed to achieve success after only 300 tries.{2}

A pair of papers in the British journal Nature{3} remedied much of the concern over Dolly’s authenticity. DNA microsatellite and DNA fingerprinting analyses conclusively demonstrated that Dolly was an identical DNA copy of the cells of a 6-year-old ewe and not a clone of the fetus carried inside that ewe.

Cloning Mice Makes Cloning Humans More Feasible

Even with the clear success of cloning sheep, which Dolly’s appearance and confirmation make plain, many doubted that the technology used to produce Dolly could be applied to humans. This skepticism was largely due to the universal failure to clone mice from adult cells.

Mice have a number of advantages as experimental animals for cloning. The gestational time in mice is very short–a matter of weeks, their embryos are easier to manipulate than sheep and cows, and their genetics are already well understood.{4} But it was widely recognized that the early development of mice and sheep is significantly different. In sheep, the DNA in the newly formed nucleus remains dormant for several days. This was suspected to provide time for the DNA to be reprogrammed from its original function to embryonic functions. Mice, on the other hand, begin using the DNA in the newly formed nucleus after just 24 hours. It was thought that this might prove to be insufficient time for the DNA to be reprogrammed.

However, this too has been overcome, and in dramatic fashion. In July of 1998, Nature published results by T. Wakayama, working in Hawaii, documenting the cloning of mice.{5} And not just one mouse, but over 50 mice. Three successive generations were cloned, raising the conundrum that the “grandmother” was the twin sister of the “granddaughters.”{6}

But what did Wakayama and his colleagues do that was different to bring about success? Strangely enough, no one is really sure. Apart from a few tricks of timing, the major difference seems to be that they used a cell type that no one had used before, and it worked! As an aside, Wakayama tried other adult mouse cells (neurons and testicular cells) that only brought about the usual negative results.

But they also tried cumulus cells. Cumulus cells are a non-growing group of cells that surround an egg cell after it is released from the ovaries. This served to confirm the suspicion that adult cells need to be quiescent, or non-growing, to be successful in cloning experiments. Still, the nuclear transfer technique employed by Wakayama was successful between 2 and 3% of the time using cumulus cells. This rate of success is ten times better than the technique that led to Dolly, but still very low, making the process tedious.

The success with cumulus cells is why the first cloned mouse was named Cumulina. It is also interesting that only cells from females have been successful in cloning attempts thus far. This could be problematic. For, you see, if all you need is a quiescent adult cell, an egg, and a womb, well, male involvement isn’t really necessary. Perhaps it’s best not to speculate what, if anything, this may mean in the future.

For many, the real significance of successful mouse cloning techniques is its application to humans. The early stages of embryonic development are very similar in mice and humans. Therefore, many believed that since cloning mice seemed next to impossible because of the early onset of DNA activity in mice and humans, cloning humans would also remain technologically impossible. Cumulina and her sisters have changed all that.

What Will Animal Cloning Be Used For?

So now we can clone sheep and mice. Apart from the possibilities for humans, what’s the big deal? Why are scientists and pharmaceutical companies spending so much time and money trying to clone animals? Quite simply, the combination of the possible relief of human suffering from genetic disease with the potential to turn a handsome profit makes animal cloning nearly irresistible.

In the December 1998 issue of Scientific American, Ian Wilmut spells out some of the potential uses of animal cloning.{7} Principally, cloning will be used to create large numbers of what are called transgenic animals. Transgenic animals are genetically engineered to contain genes from another species. Wilmut and his colleagues created Dolly in an attempt to discover a more reliable method of reproducing transgenic sheep.

Creating transgenic animals is very tedious, difficult, and risky work. The Roslin Institute and PPL Therapeutics, for whom Wilmut works, transferred into sheep the gene for human factor IX, a blood- clotting protein used to treat hemophilia. With the proper genetic enhancement, sheep will produce this blood-clotting factor in their milk, which can then be harvested and sold on the market. The first transgenic sheep produced this way, Polly, was born in the summer of 1997. It is actually simpler to clone Polly than it would be to create another transgenic sheep through gene transfer.

Cloning offers many other possibilities for reproducing other kinds of transgenic animals. One is the production of animals containing transgenic organs suitable for organ transplants into humans. Pig organs are just about the right size for transplantation into humans. However, a pig heart, or liver, or kidney, would be severely and quickly rejected by our immune system. However, if the right human genes could be transferred into pigs, the organs they produce would be recognized as a human organ and not a pig organ. There would still be the problems associated with any organ transplant between humans, but these are much more manageable than cross-species immune rejection. At present, thousands die every year waiting for organs to become available. Cloning such transgenic animals could create a large and renewable source of organs for transplant.

Transgenic animals could also be created for research purposes to study human genetic diseases. Transferring defective human genes into appropriate animal hosts could produce more workable research vehicles for discovering new treatments and cures not possible using human subjects. Cloning of transgenic animals may also prove useful to create cells helpful in treating human diseases such as Parkinson’s disease, diabetes, and muscular dystrophy. In addition, cloning could be used to produce highly productive herds of sheep, cows, and pigs from animals that are already known to be excellent milk, meat, and leather producers.

Obviously, the uses of animal cloning seem limited only by our imaginations. Of course, if you are already opposed to the use of animals in experiments, or even in their use for food, these ideas are fraught with ethical difficulties. As a Christian, however, I have answered this question. The Lord Himself produced the first skins for humans in Genesis 3:21 and later after the flood, the Lord allowed animals to be used for food (Gen. 9:2-4). While the utmost of care needs to be given to ensure that God’s creatures, for whom we have been given responsibility (Gen. 1:26-28), do not suffer needlessly, the Lord clearly allows animals to be used to enhance our own lives, even if it costs them theirs.

New Uses for Human Embryo Research?

What if I told you that recent breakthroughs in human genetic research might make it possible to dramatically treat patients with Alzheimer’s, Parkinson’s, heart disease, diabetes, spinal cord injury, and a host of other degenerative diseases? In some cases, these treatments may actually cure many of these diseases and would not require the use of cells obtained from aborted fetuses. Hopefully, I’ve got your attention.

The November 6, 1998 issue of Science{9} announced the first successful attempts to cultivate human embryonic stem cells that have the potential to treat all the above diseases and more. However, they come with their own set of difficult and perhaps more serious ethical concerns.

First, just what are embryonic stem cells? Stems from plant seedlings give rise to all sorts of different structures such as trunks, branches, leaves, flowers, and eventually seeds and fruits. Animal embryonic stem cells do much the same thing. Stem cells have the potential to grow into just about any tissue that is present in the adult organism. Researchers call this potential totipotency, meaning they are potent to produce all tissues. Embryonic stem cells have been isolated from mice since the early ’80s. Such research has been impossible in humans for ethical reasons. Stem cells only come from embryos in the earliest stages of development.

No one was willing to simply use embryos to obtain stem cells, thus killing the embryo, every time stem cells were needed. But, if stem cells could be isolated and cultivated in the laboratory so they could grow and divide and maintain their stem cell functions, then a continual supply could be maintained without risk to further embryos. What is called a stem cell line would effectively be created that could be used indefinitely. This research was greeted with such comments as “extremely important,” “very encouraging,” and “a major technical achievement with great importance for human biology.”{10}

What you may have noted in the above description is that a human embryo must still be used to create this stem cell line. In fact, the study reported in Science indicates that thirty-six embryos obtained from in vitro fertilization clinics in Madison, Wisconsin and Israel were used to create five stem cell lines. The embryos were obtained with the consent of the individuals whose eggs and sperm were used to create them and the approval of the local institutional review board.

The major concern expressed so far is for the legality for other labs to use these cells. Since there is a ban on the use of federal funds for research involving tissues derived from human embryos, this research was carried out using private funds from Geron Corporation, a Menlo Park, California biotechnology firm. The availability of these stem cell lines now raises the question of whether these cells can be used by other labs currently funded by government grants. Predictably, one researcher is applying for grant money to use these stem cells to deliberately test, and hopefully repeal this restriction.{11}

Proponents of stem cell research criticize the federal ban by suggesting that this leaves the government out of the regulatory picture since no guidelines have been issued for private research. I agree that the lack of guidelines for private industry is an oversight, but opening up government funding is not the answer. The ban should remain in force. Guidelines need to be issued that forbid this important work as long as human embryos are sacrificed to produce these cell lines. Research in animals should be encouraged to see if stem cells could be produced by other means. The end does not justify the means.

The Prospects for Human Cloning: The Enigma of Dr. Richard Seed

I am frequently asked how soon I think the first human clone will be produced. I usually respond that somewhere in the world within the next five to ten years, someone will announce the creation of the first human clone. But if we are to believe Dr. Richard Seed, the first human clone will appear before the year 2001. In December 1997, Dr. Richard Seed, physicist turned fertility specialist, announced that he intends to clone human beings. He said, “I know of at least fifteen people who want to clone humans, but haven’t got quite up the nerve to do it.”{12} When asked if he had the nerve, Seed replied, “I have the nerve.”

Richard Seed appeared in the news again in September of 1998 when he announced his plans to clone himself in two years and that his wife agreed to carry the baby!{13} Seed reported that he had received hundreds of calls from individuals that want either themselves or their dying children cloned. Seed thinks this is a first step to human immortality. On January 7, 1998 Seed affirmed on ABC News Nightline his remarks from a National Public Radio interview, that cloning technology will allow us to “become one with God. We are going to have almost as much knowledge and almost as much power as God.”{14}

Right now you’re probably thinking this guy is a kook. Why worry about him? Well, that’s precisely why we need to pay attention to him. He has the ability; he perfected embryo transfers in humans. He certainly has the motivation and nerve, and he is still seeking the cash to carry it out. But if he is accurate in the number of calls he has received, money may not be a problem for long. And even if the U.S. Congress passes a bill banning human cloning, Seed has said he will move his operation to Tijuana, Mexico.

People like Richard Seed fully explain why I believe someone, somewhere in the world will produce a human clone very soon. The question is, Are we going to just throw up our hands and surrender, or will we continue to stand up for the sanctity of human life and the sacredness of the human embryo?

If we don’t think this through carefully and organize a cogent response to this threat to human dignity, the attitude of people like Prof. James Robl at the University of Massachusetts at Amherst will prevail. He said:

There is no clear-cut definition for what is life. And this is something, I think, that society is going to have to think about, is going to have to make some definitions, and those definitions may not be permanent, they may change as new technologies are developed. There is a fine line, and the line, at the early stages, is really based on your intentions of what they are to be used for as opposed to necessarily what they are. So the question of what is life seems to change, I think, in people’s minds based on what their concerns are or their own interests are in how we might use whatever it is we are producing.{15}

What Professor Robl calls for is an entirely utilitarian ethic. We define life, he says, based solely on what new technologies we develop. If a new technology, such as cloning or human stem cell production from human embryos becomes available, yet this technology threatens human dignity, we simply redefine human life to encompass the new technology. This is the frightening specter of a brave new world. We must oppose it and we must articulate why.

Notes

1. Vittorio Sgaramella and Norton D. Zinder, “Letters,” Science 279, 30 January 1998, 635-636.
2. J. Madeleine Nash, “Was Dolly a mistake?” Time, 2 March 1998, 65.
3. D. Ashworth, M. Bishop, K. Campbell, A. Colman, A. Kind, A. Schnieke, S. Blott, H. Griffin, C. Haley, J. McWhir, and I. Wilmut, “DNA microsatellite analysis of Dolly” Nature 394, 23 July 1998, 329. E. Signer, Y. Dubrova, A. Jeffreys, C. Wilde, L. M. B. Finch, M. Wells, and M. Peaker “DNA Fingerprinting Dolly” Nature 394, 23 July 1998, 329-330.
4. Davor Soltor, “Dolly is a Clone–And No Longer Alone” Nature 394, 23 July 1998, 315-316.
5. T. Wakayama, A. C. F. Perry, M. Zucotti, K. R. Johnson, and R. Yanagimachi, “Full-term Development of Mice from Enucleated Oocytes Injected with Cumulus Cell Nuclei” Nature 394, 23 July 1998, 369-374.
6. Rachel K. Sobel, “Copying a Multitude of Mice: Cloning is No Fluke; Wooly Mammoths Next?” U. S. News and World Report, 3 August 1998, 52.
7. Ian Wilmut, “Cloning for Medicine” Scientific American 279, no. 6 (December 1998): 58-63.
8. James A. Thomason, J. Itskovitz-Eldor, S. Shapiro, M. Waknitz, J. Swiergiel, V. Marshall, and J. Jones. “Embryonic Stem Cell Lines Derived from Human Blastocysts” Science 282, 6 November 1998, 1145-1147.
9. Declan Butler, “Breakthrough Stirs US Embryo Debate” Nature, 396, 12 November 1998, 104.
10. Ibid.
11. Dr. Richard Seed, Quoted on the Fox News Channel program, Trends, 8 December 1997.
12. http://www.boston.com/dailynews/wirehtml/250/Chicago_physicist_says_he_ll_clone_.shtml. 9/8/98.
13. Dr. Richard Seed, Quoted on ABC News Nightline, 7 January 1998.
14. James Robl, Quoted in The Cloning Revolution, Films for the Humanities and Sciences (1998), Box 2053, Princeton, NJ 08543-2053.

© 1999 Probe Ministries International


Genetic Engineering

Kerby Anderson provides a biblical look at genetic engineering. Christians would be wise
to distinguish between two types of research: genetic repair (acceptable) and the creation of new forms of life (unacceptable).

Genetic Diseases

The age of genetics has arrived. Society is in the midst of a genetic revolution that some futurists predict will have a greater impact on the culture than the industrial revolution. So, in this essay we are going to look at the area of genetic engineering.

The future of genetics, like that of any other technology, offers great promise but also great peril. Nuclear technology has provided nuclear medicine, nuclear energy, and nuclear weapons. Genetic technology offers the promise of a diverse array of good, questionable, and bad technological applications. Christians, therefore, must help shape the ethical foundations of this technology and its future applications.

How powerful a technology is genetic engineering? For the first time in human history, it is possible to completely redesign existing organisms, including man, and to direct the genetic and reproductive constitution of every living thing. Scientists are no longer limited to breeding and cross-pollination. Powerful genetic tools allow us to change genetic structure at the microscopic level and bypass the normal processes of reproduction.

For the first time in human history, it is also possible to make multiple copies of any existing organism or of certain sections of its genetic structure. This ability to clone existing organisms or their genes gives scientists a powerful tool to reproduce helpful and useful genetic material within a population.

Scientists are also developing techniques to treat and cure genetic diseases through genetic surgery and genetic therapy. They can already identify genetic sequences that are defective, and soon scientists will be able to replace these defects with properly functioning genes.

At this point, let’s take a look at the nature of genetic diseases. Genetic diseases arise from a number of causes. The first are single-gene defects. Some of these single-gene diseases are dominant and therefore cannot be masked by a second normal gene on the homologous chromosome (the other strand of a chromosome pair). An example is Huntington’s chorea (a fatal disease that strikes in the middle of life and leads to progressive physical and mental deterioration). Many other single-gene diseases are recessive and are expressed only when both chromosomes have a defect. Examples of these diseases are sickle-cell anemia, which leads to the production of malformed red blood cells, and cystic fibrosis, which leads to a malfunction of the respiratory and digestive systems.

Another group of single-gene diseases includes the sex-linked diseases. Because the Y chromosome in men is much shorter than the X chromosome it pairs with, many genes on the X chromosome are absent on the homologous Y chromosome. Men, therefore, will show a higher incidence of genetic diseases such as hemophilia or color blindness. Even though these are recessive, males do not have a homologous gene on their Y chromosome that could contain a normal gene to mask it.

Another major cause of genetic disease is chromosomal abnormalities. Some diseases result from an additional chromosome. Down’s syndrome is caused by trisomy-21 (three chromosomes at chromosome twenty-one). Klinefelter’s syndrome results from the addition of an extra X chromosome (these men have a chromosome pattern that is XXY). Other genetic defects result from the duplication, deletion, or rearrangement (called translocation) of a gene sequence.

Genetic engineering offers the promise of eventually treating and curing these genetic defects. Although this is a promise in the future, we are already involved in genetic counseling and the significant ethical concerns it presents. Let’s turn now to look at the topic of genetic counseling.

Genetic Counseling

As scientists have learned more about the genetic structure of human beings, they have been able to predict with greater certainty the likelihood of a couple bearing a child with a genetic disease. Each human being carries approximately three to eight genetic defects that might be passed on to their children. By checking family medical histories and taking blood samples (for chromosome counts and tests for recessive traits), a genetic counselor can make a fairly accurate prediction about the possibility of a couple having a child with a genetic disease.

Most couples, however, do not seek genetic counsel in order to decide if they should have a child, but instead seek counsel to decide if they should abort a child that is already conceived. In cases in which the mother is already pregnant, the focus is not whether to prevent a pregnancy but whether to abort the unborn child. These circumstances raise some of the same ethical concerns as abortion.

Major deformities can be discovered through many advanced new techniques. One is ultrasound, which uses a type of sonar to determine the size, shape, and sex of the fetus. An ultrasound transducer is placed on the mother’s abdomen and sound waves are sent through the amniotic sac. The sonar waves are then picked up and transmitted to a video screen that provides important information about the characteristics of the fetus.

Another important tool is laparoscopy. A flexible fiber optic scope is inserted by the doctor through a small incision in the mother’s abdomen. This tool allows the doctor to probe into the abdominal cavity.

Genetic defects can be detected in the womb through various prenatal tests. These tests can detect approximately two hundred genetic disorders. In the mid-1960s physicians began to use amniocentesis. A doctor inserts a four-inch needle into a pregnant woman’s anesthetized abdomen in order to withdraw up to an ounce of amniotic fluid. As the fetus grows, cells are shed from the skin of the fetus, and these can be collected from the fluid and used to discover the sex and genetic make-up of the fetus.

For years, doctors used this procedure to identify congenital defects by the twentieth week of pregnancy. Now more doctors use another technique called chorionic villus sampling (CVS), which can produce the same information at ten weeks. Doctors also use a blood test known as maternal serum alfa-fetoprotein (MSAFP). This test, usually done between the fifteenth and twentieth week, can detect a neural tube defect of the spinal cord or brain, such as spina bifida or Down’s syndrome.

The newest procedure is called BABI (blastomere analysis before implantation). Using reproductive technologies, a couple can conceive several embryos in test tubes and discard those exhibiting known defects. A doctor gives a woman a drug to stimulate ovulation, then extracts eggs from her ovaries and mixes them with her husband’s sperm. So far, the procedure has been used to test embryos for such hereditary diseases as Tay-Sachs and Duchenne muscular dystrophy.

Using these techniques to give genetic information to couples is not wrong in itself. But, since most of these genetic diseases cannot be cured, the tacit assumption is that abortion will be used if any defects are found. Many doctors and clinics will not do genetic tests unless a couple gives prior consent to abortion. Thus genetic counseling can often raise ethical questions, and this is especially true when abortion is involved.

Next, we’ll look at the future promise of genetic engineering found in gene splicing.

Gene Splicing: Scientific Benefits and Concerns

For the remainer of this essay, I would like to focus on the issue of gene splicing, also known as recombinant DNA research. This new technology began in the 1970s with new genetic techniques that allowed scientists to cut small pieces of DNA (known as plasmids) into small segments that could be inserted in host DNA. The new creatures that were designed have been called DNA chimeras because they are conceptually similar to the mythological Chimera (a creature with the head of a lion, the body of a goat, and the tail of a serpent).

Gene splicing is fundamentally different from other forms of genetic breeding used in the past. Breeding programs work on existing arrays of genetic variability in a species, isolating specific genetic traits through selective breeding. Scientists using gene splicing can essentially “stack” the deck or even produce an entirely new deck of genetic “cards.”

But this powerful ability to change the genetic deck of cards also raises substantial scientific concerns that some “sleight-of-hand” would produce dangerous consequences. Ethan Singer said, “Those who are powerful in society will do the shuffling; their genes will be shuffled in one direction, while the genes of the rest of us will get shuffled in another.” Also there is the concern that a reshuffled deck of genes might create an Andromeda strain similar to the one envisioned by Michael Crichton is his book by the same title. A microorganism might inadvertently be given the genetic structure for some pathogen for which there is no antidote or vaccine.

In the early days of this research, scientists called for a moratorium until the risks of this new technology could be assessed. Even after the National Institute of Health issued guidelines, public fear was considerable. When Harvard University planned to construct a genetic facility for gene splicing, the mayor of Cambridge, Massachusetts, expressed his concern that “something could crawl out of the laboratory, such as a Frankenstein.”

The potential benefits of gene splicing are significant. First, the technology can be used to produce medically important substances. The list of these substances is quite large and would include insulin, interferon, and human growth hormone. Gene splicing also has great application in the field of immunology. In order to protect organisms from viral disease, doctors must inject a killed or attenuated virus. Scientists can use the technology to disable a toxin gene, thus yielding a viral substance that triggers the generation of antibodies without the possibility of producing the disease.

A second benefit is in the field of agriculture. This technology can improve the genetic fitness of various plant species. Basic research using this technology could increase the efficiency of photosynthesis, increase plant resistance (to salinity, drought, or viruses), and reduce a plant’s demand for nitrogen fertilizer.

Third, gene splicing can aid industrial and environmental processes. Industries that manufacture drugs, plastics, industrial chemicals, vitamins, and cheese will benefit from this technology. Scientists have already begun to develop organisms that can clean up oil spills or toxic wastes.

This last benefit, however, also raises one of the greatest scientific concerns over genetic technology. The escape (or even intentional release) of a genetically engineered organism might wreak havoc on the environment. Scientists have created microorganisms that dissolve oil spills or reduce frost on plants. Critics of gene splicing fear that radically altered organisms could occupy new ecological niches, destroy existing ecosystems, or drive certain species to extinction.

Gene Splicing: Legal and Ethical Concerns

Now, we want to focus on the legal and ethical concerns of gene splicing.

Legal concerns also surround genetic technology. The Supreme Court ruled that genetically engineered organisms as well as the genetic processes that created them can be patented. The original case involved a microorganism designed to eat up oil-slicks; it was patented by General Electric. Since 1981 the U.S. Patent and Trademark Office has approved nearly 12,000 patents for genetic products and processes. Scientists have been concerned that the prospects of profit have decreased the relatively free flow of scientific information. Often scientists-turned-entrepreneurs refuse to share their findings for fear of commercial loss.

Even more significant is the question of whether life should even be patented at all. Most religious leaders say no. A 1995 gathering of 187 religious leaders representing virtually every major religious tradition spoke out against the patenting of genetically engineered substances. They argued that life is the creation of God, not humans, and should not be patented as human inventions.

The broader theological question is whether genetic engineering should be used and, if permitted, how it should be used. The natural reaction for many in society is to reject new forms of technology because they are dangerous. Christians, however, should take into account God’s command to humankind in the cultural mandate (Gen. 1:28). Christians should avoid the reflex reaction that scientists should not tinker with life; instead Christians should consider how this technology should be used responsibly.

One key issue is the worldview behind most scientific research. Modern science rests on an evolutionary assumption. Many scientists assume that life on this planet is the result of millions of years of a chance evolutionary process. They conclude, therefore, that intelligent scientists can do a better job of directing the evolutionary process than nature can do by chance. Even so, many evolutionary scientists warn of this potential danger. Ethan Singer believes that scientists will “verify a few predictions, and then gradually forget that knowing something isn’t the same as knowing everything. . . . At each stage we will get a little cockier, a little surer we know all the possibilities.”

Some evolutionary scientists have always believed they could control evolution. In essence, gene splicing gives them the tools they have wanted. Julian Huxley looked forward to the day in which scientists could fill the “position of business manager for the cosmic process of evolution.” Certainly this technology enables scientists to create new forms of life and alter existing forms in ways that have been impossible until now.

How should Christians respond? They should humbly acknowledge that God is the sovereign Creator and that man has finite knowledge. Genetic engineering gives scientists the god-like technological ability, but without the wisdom, knowledge, and moral capacity to behave like God.

Even evolutionary scientists who deny the existence of God and believe that all life is the result of an impersonal evolutionary process express concern about the potential dangers of this technology. Erwin Chargaff asked, “Have we the right to counteract, irreversibly, the evolutionary wisdom of millions of years, in order to satisfy the ambition and curiosity of a few scientists?” His answer is no. The Christian’s answer should also be the same when we realize that God is the Creator of life. We do not have the right to “rewrite the sixth day of creation.”

But can gene splicing be used responsibly? We’ll address that question next as we attempt to put forward a biblical framework for genetic engineering.

A Biblical Framework for Genetic Engineering

When faced with the complexities of modern life, and especially with modern technology, many tend to exert the mental reflex of condemning all forms of genetic engineering. So the obvious first question is whether genetic engineering should be used at all. Then, if it is permissible, we should ask how it should be used.

Christians must resist the tendency to reject technology merely because it is foreign or merely because it is technology. God’s command to humankind in the cultural mandate (Gen. 1:28) instructs us to develop and use technology wisely. Christians should avoid the reflex reaction that scientists should not tinker with life; instead Christians should develop a biblical framework to guide responsible use of this technology.

In developing this framework, I believe we must distinguish between two types of research. The first could be called genetic repair. This research attempts to remove genetic defects and develop techniques that will provide treatments for existing diseases. Applications would include various forms of genetic therapy and genetic surgery as well as modifications of existing microorganisms in order to produce beneficial results.

The Human Genome Project is helping scientists to pinpoint the location and sequence of the approximately 100,000 human genes. Further advances in gene splicing will allow scientists to repair defective sequences and eventually remove these genetic diseases from our population.

Genetic disease is not part of God’s plan for the world. It is the result of the Fall (Gen. 3). Christians can apply technology to fight these evils without being accused of fighting against God’s will. Genetic engineering can and should be used to treat and cure genetic diseases.

A second type of research is the creation of new forms of life. While minor modifications of existing organisms may be permissible, Christians should be concerned about the large-scale production of novel life forms. Their potential impact on the environment and on mankind could be considerable. Science is replete with examples of what can happen when an existing organism is introduced into a new environment (e.g., the rabbit into Australia, the rat to Hawaii, or the gypsy moth in the United States). One can only imagine the potential devastation that could occur when a newly created organism is introduced into a new environment.

God created plants and animals as “kinds” (Gen. 1:24). While there is minor variability within these created kinds, there are built-in barriers between these created kinds. Redesigning creatures of any kind cannot be predicted the same way new elements on the periodic chart can be predicted for properties even before they are discovered. Recombinant DNA technology offers great promise in treating genetic disease, but Christians should also be vigilant. While this technology should be used to repair genetic defects, it should not be used to confer the role of creator on scientists.

I believe Christians involved in the scientific disciplines of biology, genetics, medicine, and molecular biology need to stand up and point the way to the wise and proper use of genetic engineering. The benefits are great, but so are the perils. As with any form of technology, Christians should thoughtfully and carefully promote the beneficial aspects of this technology while resisting and constraining its detrimental aspects.

 

©1998 Probe Ministries


Can Humans Be Cloned Like Sheep?

Why Is Cloning So Difficult and How Did They Do It?

Like so many others I was caught totally flat-footed and astonished by the announcement of the successful cloning of an adult sheep, Dolly. A few years ago I aired a radio program on the prospects of human cloning and considerably downplayed the possibilities. Earlier this year, we here at Probe had decided to rebroadcast this program because little had changed. When the announcement about Dolly was made, it was too late to pull the program from the schedule as tapes had already been sent to all the radio stations, and there just wasn’t time to replace or update it. Consequently, I compiled a few thoughts and comments on this historic breakthrough and quickly made it available on our web site to temporarily plug the gap.

Subsequently, the article was featured on Christian Leadership’s web site, Leadership University (www.leaderu.com), and I started receiving numerous phone calls and e-mails as a result. This essay is now an updated and expanded version of that article to help us think through both the scientific and moral implications of this stunning achievement.

The genetic material is the same in all cells of an organism (except the reproductive cells, sperm and egg, which have only half the full complement of chromosomes). However, differentiated cells (liver cells, stomach cells, muscle cells, etc.) are biochemically programmed to perform limited functions and all other functions are turned off. Most scientists felt that the reprogramming was next to impossible based on cloning attempts in frogs and mice.

So what did the scientists in Scotland do that was successful? Well, they took normal mammary cells from an adult ewe and starved them (i.e., denied them certain critical growth nutrients) in order to allow the cells to reach a dormant stage. This process of bringing the cells into dormancy apparently allows the cells’ DNA to be deprogrammed. Apparently most if not all of the programming for specific functions of the mammary cells were turned off and the DNA made available for reprogramming. The starved mammary cells were then fused with an egg cell that had its nucleus removed. The egg cell was then stimulated to begin cell division by an electric pulse. Proteins already in the egg cell somehow altered the DNA from the mammary cell to be renewed for cell division and embryological functions.

As might be expected, the process was inefficient. Out of 277 cell fusions, 29 began growing as embryos in vitro or in the petri dish. All 29 were implanted into 13 receptive ewes, yet only one became pregnant. As a result of these efforts, one lamb was born. This translates to a success rate of only 3.4%, and the success rate is even less (.36%), when you calculate using the 277 initial cell fusions attempted. In nature, on the other hand, somewhere between 33 and 50% of all fertilized eggs develop fully into newborns.

Altogether the procedure was rather non-technical, and no one is really sure why it worked. The experiments still need to be repeated. Previously, all attempts to clone mice from adult cells have failed. But clearly, an astounding breakthrough has been made. You can be sure that numerous labs around the world will be attempting to repeat these experiments and trying the technique on other mammalian species. Can this procedure be done with humans? Should we try it with humans? I’ll be dealing with these questions later in this discussion.

Why Clone Anything?

Before proceeding to deal with the question of human cloning, a more basic concern needs to be addressed. Some, for example, may be asking, “Why would anyone want to clone anything in the first place, but especially sheep?”

The purpose of these experiments was to find a more effective way to reproduce already genetically engineered sheep for production of pharmaceuticals. Sheep can be genetically engineered to produce a certain human protein or hormone in its milk. The human protein can then be harvested from the milk and sold on the market. This is accomplished by taking the human gene for the production of this protein or hormone and inserting it into an early sheep embryo. Hopefully the embryo will grow into a sheep that will produce the protein.

This is not a certainty, and while the process may improve, it will never be perfect. Mating the engineered sheep is also not foolproof because even mating with another genetically engineered sheep may result in lambs that have lost the inserted human gene and cannot produce the desired protein. Therefore, instead of trusting the somewhat unpredictable and time-consuming methods of normal animal husbandry to reproduce this genetic hybrid, cloning more directly assures that the engineered gene product will not be lost.

There may be other benefits to cloning technology. Reprogramming the nucleus of other cells, such as nerve cells, could lead to procedures to stimulate degenerating nerve cells to be replaced by newly growing nerve cells. Nerve cells in adults do not ordinarily regenerate or reproduce. This could have important implications for those suffering from Parkinson’s and Alzheimer’s.

If the process can actually be perfected to the extent that production costs are reduced and the quality of the eventual product is improved, then this would be a legitimate research goal. The simplicity of the technique, though still inefficient, makes this plausible. But there are still questions that need to be answered.

One critical question concerns the lifespan of Dolly. All cells have a built in senescence or death after so many cell divisions. Dolly began with a cell from a ewe that was already six years old. A normal lifespan for a ewe is around 11 years. Will Dolly live to see her seventh birthday? Actually most cell divisions are used up during embryological development. Dolly’s cells may peter out even earlier. This is critical because a 10-year-old sheep is considered elderly, and lambing and wool production decline in sheep after their seventh year. My guess though is that since Dolly’s genes were reprogrammed from mammary cell functions to embryological functions, that the senescence clock was also reset back to the beginning. I expect Dolly to live a normal lifespan.

It is also uncertain as to whether Dolly will be reproductively fertile. Frogs cloned from tadpole cells are usually sterile. It is possible that while Dolly is normal anatomically, the cloning process may somehow interfere with the proper development of the reproductive cells. If this were the case, there may be other problems not immediately detectable. This will be answered this summer when Dolly reaches sexual maturity.

Can We Clone Humans?

While we have established that animal cloning may be permissible and even scientifically useful, what about cloning humans? First of all, is it feasible? Secondly, just because we can do it, should we? Should we even try?

At this point it is reasonable to assume that because the procedure works with sheep and possibly with cattle (the experiments with cattle are already underway), it should be perfectible with humans. This does not mean, however, that there may not be unique barriers to cloning humans as opposed to cloning sheep.

Some suggest that by using the particular procedure developed by the researchers in Scotland, sheep may be easier to clone. The reason is that sheep embryos do not employ the DNA in the nucleus until after 3 to 4 cell divisions. This may give the egg cell sufficient time to reprogram the DNA from mammary cell functions to egg cell functions. Human and mouse cells employ the nuclear DNA after only the second cell division. This may be why similar experiments have not worked in mice. Therefore, human cells and mouse cells may not be capable of being cloned because of this difference.

If this barrier does indeed exist, it is not necessarily insurmountable. The news of a cloned sheep was surprising enough that no one, including me, is now going to step out on the same sawed-off limb and predict that it can’t eventually work with humans. I mentioned earlier that the procedure is so startlingly non-technical that there are numerous laboratories around the world that could immediately begin their own cloning research program with a minimum of investment and expertise. While I fully expect that many labs will begin studies on cloning other mammalian species besides sheep, I’m not so sure about humans.

In 1993, researchers here in the United States employed well known techniques to artificially twin human embryos. They immediately became embroiled in a firestorm of public scrutiny that they did not anticipate nor enjoy (see my earlier article, “Human Cloning: Have Human Beings Been Cloned?”). They were even criticized by other researchers in the field for jumping ahead without scrutinizing the ethical ramifications. The public reaction was no doubt very sobering to the rest of the scientific community. Many countries have already either completely banned experimentation in human cloning or at least imposed a temporary moratorium so that the ethical questions can be properly investigated before stepping ahead. Even the researchers in Scotland responsible for Dolly have plainly stated that they see no reason to pursue human cloning and are personally repulsed by the idea.

There are some in the scientific community, however, who feel that the ability to do something is reason enough to do it. But in this case, I believe that they are the minority. For example, molecular biologists imposed a moratorium of their own in the 70s when genetic technology was first being developed until critical questions could be answered. Also, while nuclear weapons have been produced for over 50 years, only two have been used and that was 52 years ago. Many are now being dismantled. These cases show us that human restraint, though rare, is possible.

So while it is reasonable to believe that humans can be cloned, and that someone, somewhere may try, the overall climate is so against it that I don’t think we will see it announced anytime soon.

Why Clone Humans?


Overall, the public reaction has been negative toward cloning human beings, and this is rather curious in a culture that is admittedly post-Christian in orientation. Nevertheless, many people still want to draw a distinction between animals and humans.

As Christians we understand this desire because we assert that humans are made in the image of God and that animals are not. There is, therefore, a clear demarcation between animals and humans. But in an evolutionary view, humans are nothing special–just another animal species. The expected reaction was offered by an editorial in the Dallas Morning News (Monday, 3 March 1997, 9D) by Tom Siegfried which he titled: “It’s hard to see a reason why a human Dolly is evil.” He summarized his perspective when he said, “The ability to clone is part of gaining deeper knowledge of life itself. So Dolly should not be seen as scary, but as a signal that life still conceals many miracles for humans to discover.” To the naturalist, any knowledge is valuable, and the means to obtain it is justified essentially by its benefit to society.

With this in mind, let’s explore some of the reasons why people have suggested that human cloning is a worthwhile proposition and deal with some of the questions people are asking.

Concerns About Human Cloning

There is much that can be learned about human embryonic development by researching human cloning. While this is true, this is precisely the reasoning used by Nazi Germany to justify experimentation on Jews. Experiments were performed on exposure to cold, water, and other extreme conditions with human subjects, frequently to the point of death, because data on human subjects was deemed indispensable. Of course, we know now that animal models work just as well; consequently, there is no need to use human models to gain this type of data.

Will humans be cloned for spare parts? A few writers have suggested that some individuals may want to establish an embryonic clone to be frozen and put away. Then, in the event of a childhood disease requiring a transplant, the embryo can be thawed, implanted in a surrogate, and raised to a sufficient age for the spare organ to be harvested and transplanted. While this is certainly possible, I consider it very unlikely that these practices would be sanctioned by any government because it completely tosses aside the uniqueness of humanity and trashes the concept of human dignity. That doesn’t mean, however, that someone won’t try.

Will human cloning be used to replace a dying infant or child? This is certainly a possibility, but we need to ask if taking such a course of action is an appropriate way to deal with loss. Unrealistic expectations may be placed on a clone that would not be placed on a normally produced child. The cloned child may be the same genetically, but different in other respects. This could create more frustration than comfort.

Will humans be cloned to provide children for otherwise childless couples? This is the reason most often given for human cloning, yet the argument is unpersuasive when there are so many children that need adoption. Also, this devalues children to the level of a commodity. Also, if in vitro fertilization seems expensive at $5,000-8,000 a try, cloning will be more so.

Will human clones have souls? In my mind, they will be no different than an identical twin or a baby that results from in vitro fertilization. How a single fertilized egg splits in two to become two individuals is a similar mystery, but it happens.

Does cloning threaten genetic diversity? Excessive cloning may indeed deplete the genetic diversity of an animal population, leaving the population susceptible to disease and other disasters. But most biologists are aware of these problems, and I would not expect this to be a major concern unless cloning were the only means available to continue a species.

If the technique is perfected in animals first, will this save the tragic loss of fetal life that resulted from the early human experimentation with in vitro fertilization? In vitro fertilization was perfected in humans before it was known how effective a procedure it would be. This resulted in many wasted human beings in the embryonic stages. The success rate is still only 10 to 20%. The success rate of normal fertilization and implantation is around 33 to 50%. While animal models will help, there will be unique aspects to human development that can only be known and overcome by direct human experimentation which does not respect the sanctity of human life.

Cloning provides a means for lesbians to have children as a couple. One supplies the nucleus and the other provides the egg. The egg does contain some unique genetic material in the mitochondria that are not contributed by sperm or nucleus. One cell from each partner is fused together to create a new individual, though all the nuclear genetic material comes from only one cell. The real question is whether this is the proper environment for any child to grow up in. (For more information on this topic, see Sue Bohlin’s essay, “Homosexual Myths.”) Homosexual “marriages” are not really marriages in the normal understanding of the term, and the technological hoops that must be jumped through for any gay couple to have children should be a clear warning that something is wrong with the whole arrangement.

Are human clones unique individuals? Even identical twins manage to forge their own identity. The same would be true of clones. In fact, this may argue strongly against the usefulness of cloning since we can never reproduce all the life experiences that have molded a particular personality. The genes will be the same, but the environment and the spirit will not.

All together, I find the prospect of animal cloning potentially useful. But I wonder if the procedure is as perfectible as some hope. It may end up being an inefficient process to achieve the desired result. Human cloning is fraught with too many possible difficulties, from the waste of human fetal life during research and development to the commercializing of human babies (see my previous Human Cloning article) with far too little potential advantage to individuals and society. What there is to learn about embryonic development through cloning experiments can be learned through animal experimentation. The cloning of adult human beings is an unnecessary and unethical practice that should be strongly discouraged if not banned altogether.

©1997 Probe Ministries