The Biology of Human Uniqueness

Dr. Ray Bohlin demonstrates unique biological attributes that set humans apart because we are made in the image of God.

What's So Special About Humans?

As humans we tend to think of ourselves as rather unique in the created order of things. As Christians, we understand ourselves to be created in the image and likeness of God as we learn in Genesis 1:26. But what does this really mean? Certainly being made in God's image does not refer to our physical construction; God is spirit and therefore does not have a physical body. But God's plan from the beginning was to rescue us from our sin through the incarnation, God becoming man. Jesus was and is the Son of God, Messiah, the God-Man. Therefore it is not a stretch to suggest that our bodily makeup is meant to be the unique earthly home of Jesus and His Spirit within us. Therefore, I suggest that our biological make-up is unique in the animal kingdom since no other animal is made in His image.

But what does this really mean? I am going to borrow from several sources, principally Michael Denton's Nature's Destiny{1}, to discuss the biological uniqueness of humans. The Discovery Institute is also in the process of producing a film series based on Denton's work, titled Privileged Species: How the Cosmos is Designed for Human Life.

We are able to point out numerous qualitative abilities in the human species found nowhere else in the animal kingdom. I will discuss these in detail below, but I'll provide a brief overview now to whet your appetite.

First, I'll be discussing our unique intelligence. Humans' ability to think abstract thoughts appears to be absolutely unique. It is difficult to arrive at a selective advantage in an evolutionary sense to this type of thinking, so where did it come from?

Second, and related to our intelligence, is our unique language capability. Most animals communicate with their own species, but no other species, including primates, actually use *language*. As toddlers we accumulate language by simply being around it. Chimps and gorillas have to go through painstaking trial and error and still can't communicate as a three-year-old does.

Third, our excellent vision allows us to use our intelligence, language and other capabilities to manipulate our surroundings in precise and advantageous ways.

Fourth, our excellent manipulative tool, the hand, is unsurpassed in other primates. We have both strength and fine motor control in our hands, allowing us to combine a strong grip and delicate finger movements that allow a wide range of movements. This, combined with our upright stance, provides an ability to restructure our immediate surroundings as no other species can.

We are also a highly social species which allows for quick distribution of ideas to everyone's benefit. And all these combine to allow us to be the only species to use and manipulate fire, which brings a host of unique abilities.

Human Intelligence and Language

As I mentioned above, our intelligence separates us from any other primate species. Our brain is three times the size of the brain of a chimp. But beyond that, the number of neurons and connections between neurons far surpasses any other mammal. Michael Denton cites that in each cubic millimeter of

the human cortex, are 100,000 cells, about 4 kilometers of axonal wiring and 500 meters of dendrites, and around 1 billion synapse connections between neurons. We have 10 million more of these synapses than a rat brain.

The size and scope is one thing, but our mental capabilities are indeed unique. As mentioned above, humans are capable of abstract and conceptual thought. No other primate exhibits any signs of this capacity. In addition, our mathematical reasoning is completely other compared to other animals. You might suspect that some animals can count. But it is a learned response attached to reward. We don't really suspect the rat/horse/chimp knows what they are doing. Comparing calculus to simply counting bananas is just no comparison at all.

When you stop to consider our appreciation of the arts, there is no place to go but humans. James Trefil is a physicist fascinated by biology and evolution. But when considering the arts he says, "No matter how hard I try, I can't think of a single evolutionary pressure that would drive the ability of humans to produce and enjoy music and dance. . . . This has always seemed like a serious problem to me—perhaps even a more serious problem than that perceived by most of my colleagues."

When we turn to language, our uniqueness is informed even further. Plants and animals all communicate in one form or another, but not by language as humans communicate. We communicate both new information and abstract concepts, something other species don't even approach. We possess the proper equipment to both produce and receive language and speech. And by proper equipment I mean both the brain processes and the anatomical necessities for actual speech (e.g., teeth, tongue, voice box, etc.). There is also a social ability that can utilize these upper levels of communication.

But we've heard about chimps and gorillas learning language. Kanzi, a bonobo chimpanzee, learned words and even symbolic use of a keyboard. Kanzi also learned through hearing the use of new words. But that is where it stopped.

To quote James Trefil again, "If we take the claims being advanced for Kanzi at face value, where are we? We have a member of the most intelligent primate species, a veritable Shakespeare of non-human animals, raised under special and unusual conditions, performing at the level of a human child of two and a half. But remember that in humans, real language begins just after this age. . . . Then we have to conclude that even in this optimal case, animals other than humans cannot learn real human language."

Human Vision and the Hand

Now I'd like to introduce two features we can easily take for granted, our hands and our eyes.

Ordinarily we don't think of our hands as being anything special. But just try to think of any other creature that can do the many and diverse things we can do with our hands. The closest match is the hand of a chimp. But

chimp hands are larger, stronger, and even clumsy. Simple things like using all ten fingers to type, peel an apple, or tie a knot are beyond what chimps can do.

The strength in our fingers comes from larger muscles in the forearm and the fine manipulative control comes from much smaller muscles in the hand itself. Our ability to manipulate our environment with our hands is unparalleled. Using our intelligence we even devise additional tools for our hands to further extend our mastery of the world around us. Full use of our hands comes about from our upright and bipedal gait, allowing our hands the freedom not found in any other mammal.

In his book *Nature's Destiny* Michael Denton asks about the human hand "whether any other species possesses an organ approaching its capabilities. The answer simply must be that no other species possesses a manipulative organ remotely

approaching the universal utility of the human hand. Even in the field of robotics, nothing has been built which even remotely equals the all-around manipulative capacity of the hand."

But in order to even use our hands well, we need exceptional vision to be able to detect all the little things our minds notice to manipulate. Given the physics of visible light and the dimensions and molecular process of detecting light in our eyes, the resolving power of the human eye is close to the optimum for a camera-type eye using biological cells and processes.

Some animals such as high-flying hawks and eagles detect motion from far greater distances that we can, and some organisms see much better in the dark than we do, but for allaround color vision, detail and resolution, our eyes seem to be the best there is. Combined with our highly interconnected brain, our upright gait for easily seeing straight ahead, a swiveling neck to see side to side, and our overall size, our eyes open the world to us as for no other species.

Developing science and technology, communicating to thousands and even millions through the written word, and simply exploring the world around us, are only possible through an integrated use of our unique intelligence, social structure and speech, hands and vision.

The Use of Fire

As I have explored the biology of human uniqueness, I have focused on some of our individual capacities such as our intelligence, speech, our marvelous hands, and our unique allaround color vision. I have used throughout, the wonderful book by Michael Denton, *Nature's Destiny*. Now I'm looking at one of our key distinguishing characteristics which combine all of these. Humans are the only biological creatures that

have mastered the use of fire. If you think for a minute, every other animal has nothing but fear when it comes to fire. We are also fearful of fire and the damage it can do, but we have also managed to harness it and use it.

There are a couple of obvious advantages for the use of fire. First it provides additional light after sundown that extends our activity into the evening. Second, fire provides additional warmth in the evening and allows us to venture into colder climates. Third, fire allows us to cook food, particularly meat which is a very significant source of fat calories and protein. Cooking our food certainly distinguishes us from any other creature and has allowed us to add the necessary energy to fully use that big brain of ours which is a major drain on our energy stores, even at night.

But beyond these, if we never harnessed the energy and power of fire, we would not have been able to develop tools involving metal. Using heat to forge ever more powerful hand tools and weapons revolutionized human culture. Without fire we could not have developed any form of chemistry and especially the use of electricity. Electricity has revolutionized human existence in the last 100 years. Fire is an influential and powerful tool indeed.

But how have we been able to do this? First, we need to take advantage of our intelligent capability for abstract thought and reasoning. As I said earlier, we too fear fire, but we need to be able to think about it and be curious enough to not only rationalize that we might be able to harness its power, but that it would also be useful. This ability to deduce the control and use of fire requires high-level reasoning.

Denton also points out that for a fire to be sustainable it needs to be at least 50 centimeters across (or about a foot and a half). To create a fire of this size we need our upright stance to walk the distance to gather the right amount and size of branches. That means that our upright stance, free

arms, the manipulative tools of our hands, and our discerning vision work together to allow us to create a sustainable fire.

Therefore, the control and manipulation of fire requires a combined use of most of our unique biological capacities. Think about this the next time you sit around a campfire or grill your supper on a warm summer day. It's part of what makes us human!

Human Anatomy and Genome

In this article I have been focusing on aspects of human biology that make us unique in the universe of living organisms. I discussed in some detail our unique intelligence, allowing us complex and abstract thought. We have a unique ability to communicate audibly and through a symbolic written word. These combine with our stereo vision and unique manipulative tool the hand, to allow us sole possession of the ability to use and manipulate fire. All of these capabilities are made possible by several unique aspects of our anatomy.

Humans have the largest brain of any primate species. Whales, dolphins, and elephants have larger brains, but size is not the main distinctive. Our human brain is structured like no other. If you were to open up just one cubic millimeter of our brain you would find over 100,000 cells with 4 kilometers of cell wiring and 1 billion connections between neurons. The structure and organization of our brain is definitely without parallel. Studies of our entire genome compared to chimpanzees indicate vast differences in non-coding sequences that influence the production of brain proteins. These changes are in the thousands.

In 1999, famous MIT linguist Noam Chomsky, reflected that "Thus, in the case of language, . . . (new research) is providing interesting grounds for taking seriously an idea that a few years ago would have seemed outlandish: that the

language organ of the brain approaches a kind of optimal design, that it is in some interesting sense an optimal solution to the minimal design specifications the language organ must meet to be usable at all." Without our unique brain structure, our language ability would not be forthcoming.

When comparing our skeletal structure to those of our supposed closest ancestors according to an evolutionary explanation, there are major changes that would have been needed to be accomplished in a relatively short time. Casey Luskin from the Discovery Institute does an admirable job digging into these differences and makes some sweeping conclusions. Numerous studies indicate that between the lineage of *Australopithecus* and *Homo* there would need to be significant changes in shoulders, rib cage, spine, pelvis, hip, legs, arms, hands and feet. But of these major transitions, the fossil record is silent.

Luskin also refers to a study by Durrett and Schmidt in 2007 that estimates that a single-nucleotide mutation in a primate species would take 6 million years to become fixed. But what is needed are multiple mutations in multiple segments of the skeletal system and in the physiology of the brain. *Homo sapiens* are far more unique than many have suspected. The more we learn, the more unique we become.

Since humans are created in the image of God, we expect human biological uniqueness. Even more significantly, bearing His image indicates an affinity for humans by the Creator we cannot fully comprehend.

Notes

1. Michael Denton, Nature's Destiny: How the Laws of Biology Reveal Purpose in the Universe (New York: The Free Press, 1998).

©2015 Probe Ministries

Darwin on Trial: A Lawyer Finds Evolution Lacking Evidence

Darwin on Trial is the title of a book on evolution that has ruffled the feathers of the secular scientific community. Though a Christian, author Philip Johnson critiques evolutionary theory from a secular standpoint as he examines the philosophical games many scientists play to protect their evolutionary ideology.

Evolution as Fact and Theory

Johnson, a law professor at the University of California at Berkeley, attacks head-on the often-heard statement that evolution is both a fact and a theory, an evolutionary dogma that has been a major source of confusion for a long time. Evolution is a fact, Darwinists say, in that they know that evolution has occurred. It is a theory in that they are far from understanding the mechanisms by which evolution has occurred. In the eloquent words of evolutionist Stephen J. Gould.

Evolution **is** a theory. It is also a fact. And facts and theories are different things, not rungs in a hierarchy of increasing certainty. Facts are the world's data. Theories are structures of ideas which explain and interpret facts. Facts do not go away while scientists debate rival theories for explaining them. Einstein's theory of gravitation replaced Newton's, but apples did not suspend themselves in mid-air pending the outcome. And human beings evolved from apelike ancestors whether they did so by Darwin's proposed

mechanism or by some other, yet to be discovered. (Evolution as Fact and Theory)

There are numerous problems with this explanation. First, if evolution is a fact, then evolution is equivalent to data. This hardly seems appropriate. Second, the comparison of evolution to gravity is misleading. We can go into any apple orchard and observe apples falling from trees. But where do we go to observe humans evolving from apelike ancestors? Apples falling from trees fits into the category of science we can term operations science which utilizes data that are repeatable and observable at any time. Humans evolving from apelike ancestors, however, would fall under the category of origins science. Origins science involves the study of historical events that occur just once and are not repeatable. We can only assemble what evidence we have and construct a plausible scenario, much like the forensic scientist Quincy did in the old television show. The so-called facts of human evolution, by Gould's own definition, are the fossils and the rock layers they are found in. That humans evolved from apelike ancestors is a theory that attempts to explain and interpret these facts.

Later in the same article Gould states the real definition of fact under which evolution fits. He begins by saying that fact does not necessarily mean absolute certainty. Then he says, "In science, fact' can only mean confirmed to such a degree that it would be perverse to withhold provisional assent.'" In other words, evolution is a fact because a majority of scientists say so, and you are "perverse" if you do not agree. We quickly begin to see that evolution holds a privileged place in the scientific community, which will go to extraordinary lengths to preserve that status.

A Theory in Crisis

Johnson's book, although the most recent, is not the first to

question evolution's status as fact. Michael Denton, an agnostic medical researcher from Australia, caused quite a storm with his 1985 book, Evolution: A Theory in Crisis. Denton's point is that orthodox Darwinism has such a stranglehold on the biological sciences that contradictory evidences from fields such as paleontology, developmental biology, molecular biology, and taxonomy are passed off as intramural squabbles about the process of evolution. The "fact" of evolution is never really in question. Like Johnson, Denton points out that Darwinism is not a fact. It is a mechanistic theory that is still without a mechanism. While moths and fruit flies do respond to environmental stimuli, our observations of this process have been unable to shed any light on the means by which we have come to have horses and woodpeckers and wasps. The origin of complex adaptations has remained a mystery. The fossil record is pockmarked with gaps in the most embarrassing places. Darwin predicted innumerable transitional forms between major groups of organisms, yet the few transitions that are suggested are surrounded in controversy. Another "fact" that fails to withstand Denton's scrutiny is the assumption that similar biological structures owe their similarity to a common ancestry. Homology, which studies these similarities, assumes for example that the forelimbs of amphibians, reptiles, birds, and mammals are similar in structure because they evolved from the same source. Denton reveals, however, that these same classes of vertebrates go through remarkably different stages of early embryological development. This was certainly not a prediction of Darwinian evolution. Even more importantly, Denton reports that comparison of the sequences of proteins from different organisms actually supports the pre-Darwin classification, which was based on creationist principles.

Also, the many chemical evolution scenarios are caught in numerous intractable dilemmas that offer little hope of resolution (see *Scientific American*, Feb. 1991).

Rules of Science and Evolution

Another issue that Philip Johnson treats in his book is the fact that the rules of science tend to be stated and followed differently depending on whether you are talking about evolution or creation. Professor Johnson refers specifically to Judge William Overton's decision striking down the Arkansas Creation/Evolution Balanced Treatment law. In his written decision, which was reprinted in its entirety in the prestigious journal *Science*, Judge Overton reiterated five essential characteristics of science that were given by opponents of the bill during the trial. Science, in the judge's opinion, must be:

- Guided by natural law
- Explanatory by reference to natural law
- •Testable against the empirical world
- •Tentative in its conclusions—that is, not necessarily the final word
- Falsifiable

Judge Overton decided that creation-science does not meet these criteria since it appeals to the supernatural and is therefore not testable, falsifiable, or explanatory by reference to natural law. Johnson points out that philosophers of science have been very critical of the definitions of science given in the decision and have suggested that the expert witnesses provided by the ACLU attorneys got away with a philosophical snow job. Critics have pointed out that scientists are not the least bit tentative about their basic commitments, especially about their commitment to evolution. From my own experience, all one has to do is attend any scientific meeting to see that some scientists are anything but tentative about their ideas. Also, scientists study the effects of phenomena (such as gravity) that they cannot explain by natural law. Finally, critics have noted that creation-science, as proposed by the Arkansas law, does make empirical claims (such as a young earth, worldwide flood, special creation). Mainstream science has said these claims are demonstrably false, which raises the interesting question, How can creation-science be both unfalsifiable and demonstrably false at the same time? Johnson clearly reveals that what is really being protected by these rules of science is not necessarily evolution, but the philosophical doctrine known as naturalism. According to Johnson, "Naturalism assumes the entire realm of nature to be a closed system of material causes and effects, which cannot be influenced by anything from the outside." While this doctrine does not deny the existence of God, it certainly makes Him irrelevant. Science, therefore, becomes our only reliable path to knowledge. The issue as Johnson states it, is

...Whether this philosophical viewpoint is merely an understandable professional prejudice or whether it is the objectively valid way of understanding the world. That is the real issue behind the push to make naturalistic evolution a fundamental tenet of society, to which everyone must be converted.

The consequence of this kind of thinking is that evolution is made the basis of ethical and religious statements, which is precisely what most evolutionists find repulsive about creation.

Darwinist Religion

A frequent refrain from evolutionists is that the evolution/creation debate is actually a collision between science and religion. If creationists would just realize their view is inherently religious and that evolution is the scientific view, then there would be little to disagree about. Evolution belongs in the science classrooms and creation belongs only in the philosophy and religion classrooms. What gets left behind in this discussion, either intentionally or

unintentionally, are the very firm religious implications of atheistic naturalism with evolution as its foundation. We only need to look at a few sources to see the religious nature of evolution. The first source is the blatantly religious statements of certain evolutionists themselves. Philip Johnson quotes the evolutionist William Provine as stating quite categorically that:

- Modern science, i.e., evolution, implies that there is no purpose, gods, or design in nature.
- There are no absolute moral or ethical laws.
- Heredity and environment determine all that man is.
- When we die, we die, and that is all there is.
- Evolution cannot produce a being that is truly free to make choices.

Statements such as these make it quite clear: the belief that science and religion are different spheres of knowledge is complete nonsense.

A second source that establishes the religious nature of evolution is the attacks of evolutionists on the God of the Bible using evolutionary principles. In his chapter on natural selection, professor Johnson provides an example from evolutionist Douglas Futuyma. Futuyma states that a Creator would never create a bird such as the peacock, whose six feet of bulky feathers make it easy prey for leopards. (Johnson turns the tables, however, by asking why natural selection would favor a peahen that lusts after males with lifethreatening decorations.) It has always amazed me that people who claim that there is no God sure seem to have an intimate knowledge of what He would be like if He did exist. At any rate, if evolution can be used to discredit certain notions about the character of God, then evolution is indeed making religious statements. A third indication of the religious nature of evolution is the knee-jerk reaction of the evolutionary establishment against any statement that even

hints that evolution is a tentative theory. In 1984, a group of scientists who are Christians but who do not identify themselves with creation scientists published a booklet entitled *Teaching Science in a Climate of Controversy* and mailed it to thousands of school teachers. The general idea of the booklet was to encourage open-mindedness on certain issues and controversies regarding evolution. Evolutionists quickly chided the publication as a clever disguise of creationism. To quote Johnson, "The pervasive message was that the ASA [American Scientific Affiliation] is a deceitful creationist front which disguises its Biblical literalist agenda under a pretense of scientific objectivity." In other words, anything that smells of God must be creationist and must be stamped out.

Darwinist Education

In the later chapters of Johnson's book, he analyzes the reaction of evolutionists to the challenges that have been leveled against them. It is here that he perhaps makes his greatest contribution. One of these reactions has been to wage what is essentially an evolutionary filibuster in educating the public about evolution. Johnson cites the experience of the British Museum of Natural History when it opened an exhibit on evolution in 1981. The exhibit presented Darwinian evolution as one idea and one possible explanation. Creation was cited as another view. This tentativeness was too much for some scientists to bear. A firestorm of criticism appeared in the British science journal Nature. Many were furious that the museum would actually go public with doubts about evolution, doubts that had previously been reserved for discussion among evolutionary scientists alone. The criticism was so severe that the museum eventually removed the exhibit and replaced it with a more "traditional" evolution exhibit. One of the Museum's top scientists, Colin Patterson, made a similar reversal concerning his view that he required faith in order to accept evolution. The criticism eventually convinced him to

discontinue making these statements public.

In the United States, the Science Framework adopted by the state of California in 1989, which has a significant effect on the content of science textbooks, contained this statement concerning evolution: "[Evolution] is an accepted scientific explanation and therefore no more controversial in scientific circles than the theories of gravitation and electron flow." This assertion is nothing more than an appeal to authority and has nothing to do with legitimate scientific evidence. As a result of this statement, evolution is being included in science textbooks at increasingly lower grade levels. The purpose is clear: if students can be indoctrinated in evolution early enough and often enough, perhaps all this controversy can be avoided.

Conclusion

In summary, I have pointed out that many critical predictions of Darwinian evolution have not been fulfilled. As a result, naturalistic atheism, the underlying philosophy of much of the evolutionary establishment, has been threatened. The response of many evolutionists has been to issue increasingly dogmatic statements that appeal to authority, not to evidence, play semantic word games where evolution is called both a fact and a theory, and wage an educational filibuster aimed at squelching all dissent. The evolutionists are not likely to abandon these tactics anytime soon, but until they do, they can expect even more criticism from scholars such as Professor Philip Johnson.

© 1992 Probe Ministries International