The Controversy Over Stem Cell Research # What Are Stem Cells and Why Are They Important? President Bush recently decided to allow the use of federal funds to research the therapeutic properties of privately produced human embryonic stem cells (ES). President Bush clearly maintained the prohibited use of federal monies to produce human ES cells, since the procedure requires the destruction of the embryo to obtain them, which is currently prohibited by federal law. To fully understand the ramifications of this decision, I will discuss the nature of stem cells and their potential to treat disease. Most of the more than one trillion cells that form the tissues of our bodies possess a limited potential to reproduce. If you remove some live human skin cells, they may divide in culture (laboratory conditions) five or six times and then die. Special cells in the underlying skin layers are what produce new skin cells. These cells' sole function is to churn out replacement cells. These are known as stem cells. Most tissues of our bodies possess stem cells that can reproduce the different cells required in that tissue. Bone marrow stem cells can produce the many different cells of the blood. They are called stem cells, since they are seen as the stem of a plant that produces all the "branches and leaves" of that tissue. What I've described is referred to as adult stem cells. There is no controversy revolving around the use of human adult stem cells in research, since they can be retrieved from the individual requiring the therapy. The promise of adult stem cells has increased dramatically in recent years. Stem cells have even been found in tissues previously thought to be devoid of them, such as neural tissue. It has recently been shown that certain types of stem cells are not limited to producing cells for the tissue in which they reside. For instance, bone marrow stem cells can produce skeletal muscle, neural, cardiac muscle, and liver cells. Bone marrow stem cells can even migrate to these tissues via the circulatory system in response to tissue damage and begin producing cells of the appropriate tissue type.{1} In addition to the advantages of previously unknown adult stem cells and their unexpected ability to produce numerous types of cells, adult stem cells carry the added potential of not causing any immune complications. Conceivably adult stem cells could be harvested from the individual needing the therapy, grown in culture to increase their number, and then be reinserted back into the same individual. This means the treatment could be carried out with the patient's own cells, virtually eliminating any rejection problems. Adult stem cells may also be easier to control since they already possess the ability to produce the needed cells simply by being placed in the vicinity of the damaged tissue. ## **Human Embryonic Stem Cells** The advances in adult stem cell research has only come about in the last three years. Traditionally it was thought that ES cells carried the greatest potential to treat wide-ranging degenerative diseases such as diabetes, Parkinson's, multiple sclerosis, spinal chord injuries, and Alzheimer's. Since ES cells derive from the inner cell mass of the early embryo (5-7 day old blastocyst), they are capable of forming all the tissues of the body. Therefore, researchers have long felt that human ES cells hold the greatest potential for treatment of degenerative diseases. While the potential has always existed, the problem has been that in order to obtain these human ES cells, the embryo is destroyed during the harvesting procedure. In addition, while ES cells had been obtained and grown successfully in culture from several mammals, including mice, efforts at producing ES cells from other mammals had failed. Nobody was sure human ES cells could even be successfully produced until November 1998 when James Thomson from the University of Wisconsin announced the establishment of five independent human ES cell lines. {2} (A cell line is a population of cells grown from a single cell that has been manipulated to continue growing indefinitely in culture, while maintaining its cellular integrity.) Geron Corporation funded Thomson's work, so it did not violate the federal ban on government funds being used for such purposes. But his announcement immediately opened up a desire by federally funded researchers to use his already established human ES cells. But there are potential problems and uncertainties in both adult and ES cells. While the ethical difficulties are non-existent for adult stem cells, they may not prove as helpful as ES cells. ES cells have the potential for universal application, but this may not be realized. As stated earlier, establishing ES cell lines requires destruction of human embryos. An ethical quagmire is unavoidable. Whereas adult stem cells can be coaxed into producing the needed cells by proximity to the right tissue, the cues needed to get ES cells to produce the desired cells is not known yet. Some in the biotech industry estimate that we may be twenty years away from developing commercially available treatments using ES cells. {3} Clinical trials using adult stem cells in humans are already under way. In August of 2000, NIH announced new guidelines allowing federally funded researchers access to human ES cell lines produced through private funding. The Clinton administration hailed the new guidelines, but Congressional pro-life advocates vowed a legal confrontation claiming the new guidelines were illegal. ## The Options for President Bush This was the situation facing President Bush when he took office. The pressure to open up federally funded human ES cell research mounted from patient advocacy groups for diabetes, spinal chord injuries, Parkinson's disease, and Alzheimer's. Additional pressure to reject federal funding of human ES cell research came from traditional pro-life groups including National Right to Life and the Catholic Church, with personal lobbying from Pope John Paul II. One option open to the President and advocated by the scientific community was to free up all research avenues to fully explore all possibilities from ES cells regardless of their source. This would include federal funding for ES cells derived from embryos specifically created for this purpose. Few openly advocated this, but the oldest fertility clinic in the U. S. (in Virginia) announced recently that they were doing just that. Few within the government or research communities offered much protest. Another option on the opposite end of the spectrum would have been to not only prohibit all federal funding on the creation and use of ES cells, but to also propose a law which would effectively ban all such research in the U. S., regardless of the funding source. Because of my view of the sanctity of human life from the moment of conception, this would be the ideal solution. However, this is not practical, since Roe v. Wade still is the rule of law in the U. S. This means that by law, a mother can choose to do with her embryo whatever she wants. If she wishes to end its life by abortion or by donation for research as a source of ES cells, she is free to do so. A third option open to the President, and the one advocated by most in the research community, was to open up federal funding for the use and creation of ES cells derived from leftover embryos destined for destruction at fertility clinics. Some have estimated that there are over 100,000 such embryos in frozen storage in the U. S. alone. The intent is to find some use or ascribe some value to these leftover embryos. It is common practice in fertility clinics to fertilize 8-9 eggs at a time to hedge your bet against failure and to minimize expenses. As many as half of these embryos are left over after a successful pregnancy is achieved. These embryos are either left in frozen storage or destroyed at the request of the parents. So why not use them for research? ## Other Options Available to President Bush Advocates for ES cell research argue that if the embryos left over from infertility clinics are going to be wasted anyway, why not put them to some use and allow their lives to be spent helping to save someone else? The first mistake was to generate extra embryos without a clear intent to use all of them or give them up for adoption. Second, these tiny embryos are already of infinite value to God. We're not going to redeem them by killing them for research. Each embryo is a unique human being with the full potential to develop into an adult. Each of us is a former embryo. We are not former sperm cells or egg cells. Third, this is essentially using the dangerous ethical maxim that "the end justifies the means." A noble end or purpose does not justify the crime. Just because a bank robber wants to donate all the money to charity doesn't make the bank heist right. Nazi researchers gained valuable information through their many life- threatening experiments on Jews and other "undesirables" in the concentration camps of WWII. But most would not dignify these experiments by examining and using their findings. A fourth option that I prefer is to close off all federal funding for human ES cell research. This would allow private dollars to fund human ES cell research, and federal dollars can be used to vigorously pursue the ethically preferable alternative offered by adult stem cells, which have shown great promise of late. This would undoubtedly slow the progress on human ES cells and some researchers. Because of their dependence on federal research grants, they would not be able to pursue this line of research. But nowhere is it written that scientists have a right to pursue whatever research goals they conceive as long as they see a benefit to it. For years the U. S. Congress passed the Hyde Amendment that prohibited the use of federal funds for abortions, even though abortions were legal. The creation of human ES cells may be legal in the U. S. but that doesn't mean researchers have a right to government monies to do so. The President did decide to allow the use of federal funds only for research involving the 60 already existing human ES cell lines. The President expressly prohibited the use of government dollars to create new ES cell lines, even from leftover embryos. Researchers and patient advocates are unhappy, because this will limit the available research if these already existing ES cell lines don't work out. Pro-life groups are unhappy, because the decision implicitly approves of the destruction of the embryos used to create these ES cell lines. ## Stem Cells in the News Since the President's Decision When the President decided to open up federal funding for research on already existing human embryonic stem cell lines, just about everybody was unhappy. Researchers and patient advocates were unhappy, because this will limit the available research if these already existing cell lines don't work out. The supply just might not meet the research demand. Pro-life groups were unhappy, including myself, because the decision implicitly approves of the destruction of the embryos used to create these ES cell lines. They will cost researchers at least \$5,000 per cell line. Therefore, to purchase them for research indirectly supports their creation. Since both sides are unhappy, it was probably a good political decision even if it was not the right decision. We certainly haven't heard the end of this debate. Members of Congress are already positioning to strengthen or weaken the ban by law. Either way, the policy of the United States has clearly stated that innocent human life can be sacrificed without its consent, if the common good is deemed significant enough to warrant its destruction. I fully believe that this is a dangerous precedent that we will come to regret, if not now, then decades into the future. The long predicted ethical slippery slope from the abortion decision continues to threaten and gobble up the weak, the voiceless, and the defenseless of our society. What has alarmed me the most since the President's decision is the full assault in the media by scientists to gain even greater access to more human embryonic stem cells, regardless of how they are produced. The ethical question virtually dropped from the radar screen as scientists debated whether the existing cell lines would be enough. This attitude is reflected in the increasing attention given to potential benefits, while downplaying the setbacks and problems. The scientists speaking through the media emphasize the new therapies as if they are only a few years down the road. The more likely scenario is that they are decades away. Your grandmother isn't likely to be helped by this research. Virtually nobody knows about the failure of human fetal cells to reverse the effects of Parkinson's disease in adults. About 15 percent of patients from a recent trial were left with uncontrollable writhing and jerking movements that appear irreversible. The others in the study weren't helped at all. {4} Chinese scientists implanted human embryonic stem cells into a suffering Parkinson's patient's brain only to have them transform into a powerful tumor that eventually killed him. {5} Research with mouse embryonic stem cells has not faired much better. Scientists from the University of Wisconsin recently announced success in tricking human embryonic stem cells into forming blood cell-producing stem cells. Enthusiastic claims of future therapies overshadowed the reality that the same procedure has been successful in mice, except that when these cells are transplanted into mice, nothing happens. They don't start producing blood cells and nobody knows why. [6] This debate will continue. Stay tuned. #### **Notes** - 1. H. M. Blau, T. R. Brazelton, and J. M. Weiman, 2001, "The evolving concept of a stem cell:entity or function," *Cell* Vol. 105 (June 29, 2001), p. 829-841. - 2. James A. Thomson, et al., 1998, "Embryonic stem cell lines derived from human blastocysts." *Science* Vol. 282 (November 6, 1998): 1145-1147. Also in same issue see Perspective article by John Gearhart, "New potential for human embryonic stem cells," p. 1061-1062. - 3. David Hamilton and Antonio Regaldo, 2001, "Biotech industry unfettered, but possibly unfilfulled," Wall Street Journal, August 13, 2001, p. B1. - 4. Tracy Maddox, 2001, Fetal tissue fails to cure Parkinson's patients. http://www.pointofview.net/ar fetal.html. 3/21/01. - 5. Charles Krauthammer, 2001, "The great stem cell hoax," *The Weekly Standard*, August 20/August 27, 2001, p. 12 - 6. Nicholas Wade, 2001, "Blood cells from stem cells," Dallas Morning News, September 4, 2001, p. Al. The article was a New # Stem Cells and the Controversy Over Therapeutic Cloning Dr. Ray Bohlin explains stem cells and where they come from, insisting the potential of stem cell therapy must be weighed against the personhood of the embryo. # What Are Stem Cells and Why Are They Important? President Bush recently decided to allow the use of federal funds to research the therapeutic properties of privately produced human embryonic stem cells (ES). President Bush clearly maintained the prohibited use of federal monies to produce human ES cells, since the procedure requires the destruction of the embryo to obtain them, which is currently prohibited by federal law. To fully understand the ramifications of this decision, I will discuss the nature of stem cells and their potential to treat disease. Most of the more than one trillion cells that form the tissues of our bodies possess a limited potential to reproduce. If you remove some live human skin cells, they may divide in culture (laboratory conditions) five or six times and then die. Special cells in the underlying skin layers are what produce new skin cells. These cells' sole function is to churn out replacement cells. These are known as stem cells. Most tissues of our bodies possess stem cells that can reproduce the different cells required in that tissue. Bone marrow stem cells can produce the many different cells of the blood. They are called stem cells, since they are seen as the stem of a plant that produces all the "branches and leaves" of that tissue. What I've described is referred to as adult stem cells. There is no controversy revolving around the use of human adult stem cells in research, since they can be retrieved from the individual requiring the therapy. The promise of adult stem cells has increased dramatically in recent years. Stem cells have even been found in tissues previously thought to be devoid of them, such as neural tissue. It has recently been shown that certain types of stem cells are not limited to producing cells for the tissue in which they reside. For instance, bone marrow stem cells can produce skeletal muscle, neural, cardiac muscle, and liver cells. Bone marrow stem cells can even migrate to these tissues via the circulatory system in response to tissue damage and begin producing cells of the appropriate tissue type.{1} In addition to the advantages of previously unknown adult stem cells and their unexpected ability to produce numerous types of cells, adult stem cells carry the added potential of not causing any immune complications. Conceivably adult stem cells could be harvested from the individual needing the therapy, grown in culture to increase their number, and then be reinserted back into the same individual. This means the treatment could be carried out with the patient's own cells, virtually eliminating any rejection problems. Adult stem cells may also be easier to control since they already possess the ability to produce the needed cells simply by being placed in the vicinity of the damaged tissue. ## **Human Embryonic Stem Cells** The advances in adult stem cell research has only come about in the last three years. Traditionally it was thought that ES cells carried the greatest potential to treat wide-ranging degenerative diseases such as diabetes, Parkinson's, multiple sclerosis, spinal chord injuries, and Alzheimer's. Since ES cells derive from the inner cell mass of the early embryo (5-7 day old blastocyst), they are capable of forming all the tissues of the body. Therefore, researchers have long felt that human ES cells hold the greatest potential for treatment of degenerative diseases. While the potential has always existed, the problem has been that in order to obtain these human ES cells, the embryo is destroyed during the harvesting procedure. In addition, while ES cells had been obtained and grown successfully in culture from several mammals, including mice, efforts at producing ES cells from other mammals had failed. Nobody was sure human ES cells could even be successfully produced until November 1998 when James Thomson from the University of Wisconsin announced the establishment of five independent human ES cell lines. {2} (A cell line is a population of cells grown from a single cell that has been manipulated to continue growing indefinitely in culture, while maintaining its cellular integrity.) Geron Corporation funded Thomson's work, so it did not violate the federal ban on government funds being used for such purposes. But his announcement immediately opened up a desire by federally funded researchers to use his already established human ES cells. But there are potential problems and uncertainties in both adult and ES cells. While the ethical difficulties are non-existent for adult stem cells, they may not prove as helpful as ES cells. ES cells have the potential for universal application, but this may not be realized. As stated earlier, establishing ES cell lines requires destruction of human embryos. An ethical quagmire is unavoidable. Whereas adult stem cells can be coaxed into producing the needed cells by proximity to the right tissue, the cues needed to get ES cells to produce the desired cells is not known yet. Some in the biotech industry estimate that we may be twenty years away from developing commercially available treatments using ES cells. {3} Clinical trials using adult stem cells in humans are already under way. In August of 2000, NIH announced new guidelines allowing federally funded researchers access to human ES cell lines produced through private funding. The Clinton administration hailed the new guidelines, but Congressional pro-life advocates vowed a legal confrontation claiming the new guidelines were illegal. ## The Options for President Bush This was the situation facing President Bush when he took office. The pressure to open up federally funded human ES cell research mounted from patient advocacy groups for diabetes, spinal chord injuries, Parkinson's disease, and Alzheimer's. Additional pressure to reject federal funding of human ES cell research came from traditional pro-life groups including National Right to Life and the Catholic Church, with personal lobbying from Pope John Paul II. One option open to the President and advocated by the scientific community was to free up all research avenues to fully explore all possibilities from ES cells regardless of their source. This would include federal funding for ES cells derived from embryos specifically created for this purpose. Few openly advocated this, but the oldest fertility clinic in the U. S. (in Virginia) announced recently that they were doing just that. Few within the government or research communities offered much protest. Another option on the opposite end of the spectrum would have been to not only prohibit all federal funding on the creation and use of ES cells, but to also propose a law which would effectively ban all such research in the U. S., regardless of the funding source. Because of my view of the sanctity of human life from the moment of conception, this would be the ideal solution. However, this is not practical, since Roe v. Wade still is the rule of law in the U. S. This means that by law, a mother can choose to do with her embryo whatever she wants. If she wishes to end its life by abortion or by donation for research as a source of ES cells, she is free to do so. A third option open to the President, and the one advocated by most in the research community, was to open up federal funding for the use and creation of ES cells derived from leftover embryos destined for destruction at fertility clinics. Some have estimated that there are over 100,000 such embryos in frozen storage in the U. S. alone. The intent is to find some use or ascribe some value to these leftover embryos. It is common practice in fertility clinics to fertilize 8-9 eggs at a time to hedge your bet against failure and to minimize expenses. As many as half of these embryos are left over after a successful pregnancy is achieved. These embryos are either left in frozen storage or destroyed at the request of the parents. So why not use them for research? ## Other Options Available to President Bush Advocates for ES cell research argue that if the embryos left over from infertility clinics are going to be wasted anyway, why not put them to some use and allow their lives to be spent helping to save someone else? The first mistake was to generate extra embryos without a clear intent to use all of them or give them up for adoption. Second, these tiny embryos are already of infinite value to God. We're not going to redeem them by killing them for research. Each embryo is a unique human being with the full potential to develop into an adult. Each of us is a former embryo. We are not former sperm cells or egg cells. Third, this is essentially using the dangerous ethical maxim that "the end justifies the means." A noble end or purpose does not justify the crime. Just because a bank robber wants to donate all the money to charity doesn't make the bank heist right. Nazi researchers gained valuable information through their many life- threatening experiments on Jews and other "undesirables" in the concentration camps of WWII. But most would not dignify these experiments by examining and using their findings. A fourth option that I prefer is to close off all federal funding for human ES cell research. This would allow private dollars to fund human ES cell research, and federal dollars can be used to vigorously pursue the ethically preferable alternative offered by adult stem cells, which have shown great promise of late. This would undoubtedly slow the progress on human ES cells and some researchers. Because of their dependence on federal research grants, they would not be able to pursue this line of research. But nowhere is it written that scientists have a right to pursue whatever research goals they conceive as long as they see a benefit to it. For years the U. S. Congress passed the Hyde Amendment that prohibited the use of federal funds for abortions, even though abortions were legal. The creation of human ES cells may be legal in the U. S. but that doesn't mean researchers have a right to government monies to do so. The President did decide to allow the use of federal funds only for research involving the 60 already existing human ES cell lines. The President expressly prohibited the use of government dollars to create new ES cell lines, even from leftover embryos. Researchers and patient advocates are unhappy, because this will limit the available research if these already existing ES cell lines don't work out. Pro-life groups are unhappy, because the decision implicitly approves of the destruction of the embryos used to create these ES cell lines. ## Stem Cells in the News Since the President's Decision When the President decided to open up federal funding for research on already existing human embryonic stem cell lines, just about everybody was unhappy. Researchers and patient advocates were unhappy, because this will limit the available research if these already existing cell lines don't work out. The supply just might not meet the research demand. Pro-life groups were unhappy, including myself, because the decision implicitly approves of the destruction of the embryos used to create these ES cell lines. They will cost researchers at least \$5,000 per cell line. Therefore, to purchase them for research indirectly supports their creation. Since both sides are unhappy, it was probably a good political decision even if it was not the right decision. We certainly haven't heard the end of this debate. Members of Congress are already positioning to strengthen or weaken the ban by law. Either way, the policy of the United States has clearly stated that innocent human life can be sacrificed without its consent, if the common good is deemed significant enough to warrant its destruction. I fully believe that this is a dangerous precedent that we will come to regret, if not now, then decades into the future. The long predicted ethical slippery slope from the abortion decision continues to threaten and gobble up the weak, the voiceless, and the defenseless of our society. What has alarmed me the most since the President's decision is the full assault in the media by scientists to gain even greater access to more human embryonic stem cells, regardless of how they are produced. The ethical question virtually dropped from the radar screen as scientists debated whether the existing cell lines would be enough. This attitude is reflected in the increasing attention given to potential benefits, while downplaying the setbacks and problems. The scientists speaking through the media emphasize the new therapies as if they are only a few years down the road. The more likely scenario is that they are decades away. Your grandmother isn't likely to be helped by this research. Virtually nobody knows about the failure of human fetal cells to reverse the effects of Parkinson's disease in adults. About 15 percent of patients from a recent trial were left with uncontrollable writhing and jerking movements that appear irreversible. The others in the study weren't helped at all.{4} Chinese scientists implanted human embryonic stem cells into a suffering Parkinson's patient's brain only to have them transform into a powerful tumor that eventually killed him.{5} Research with mouse embryonic stem cells has not faired much better. Scientists from the University of Wisconsin recently announced success in tricking human embryonic stem cells into forming blood cell-producing stem cells. Enthusiastic claims of future therapies overshadowed the reality that the same procedure has been successful in mice, except that when these cells are transplanted into mice, nothing happens. They don't start producing blood cells and nobody knows why. {6} This debate will continue. Stay tuned. #### **Notes** 1. H. M. Blau, T. R. Brazelton, and J. M. Weiman, 2001, "The evolving concept of a stem cell:entity or function," *Cell* Vol. 105 (June 29, 2001), p. 829-841. - 2. James A. Thomson, et al., 1998, "Embryonic stem cell lines derived from human blastocysts." Science Vol. 282 (November 6, 1998): 1145-1147. Also in same issue see Perspective article by John Gearhart, "New potential for human embryonic stem cells," p. 1061-1062. - 3. David Hamilton and Antonio Regaldo, 2001, "Biotech industry - unfettered, but possibly unfilfulled," Wall Street Journal, August 13, 2001, p. B1. - 4. Tracy Maddox, 2001, Fetal tissue fails to cure Parkinson's patients. www.pointofview.net/ar fetal.html. 3/21/01. - 5. Charles Krauthammer, 2001, "The great stem cell hoax," The Weekly Standard, August 20/August 27, 2001, p. 12. - 6. Nicholas Wade, 2001, "Blood cells from stem cells," Dallas Morning News, September 4, 2001, p. Al. The article was a New York Times News Service report. - © 2001 Probe Ministries ## **Human Genome Project** Dr. Ray Bohlin takes a brief look at the accomplishment, purpose and consequence of the Human Genome Project. This article is also available in <u>Spanish</u>. ## What's All the Fuss About the Human Genome Project? In February of 2001, virtually every media outlet, whether TV news, newspapers, radio, Internet news services, or news magazines, was all worked up about the announcement of the completion of the Human Genome Project. In this article we will explore this monumental achievement and what it means for the future of medicine and our understanding of ourselves. To appreciate this important accomplishment, we need to review a little basic genetics. It may actually astonish most adults just how much genetics the National Institutes of Health assumes we know about our genetic heritage. The educational video from the HGP includes a three-minute review of basic genetic processes like DNA packaging, transcription of DNA into message RNA, and the translation of message RNA into protein. It's no exaggeration to say that when I played this short piece during a lecture for high school students and their parents, mom and dad were left in the dust. Honestly, I did that intentionally; because we are only in the beginning stages of a genetic revolution that will transform the way we diagnose and treat disease and how we may even alter our genetic structure. These new technologies bring with them numerous ethical and moral dilemmas we have only begun to address and for which there may not be simple answers. If we don't take the time to familiarize ourselves with genetic research and its implications, we risk responding out of fear and ignorance and potentially throwing away crucial medical advances. I have contended for a long time that we can no longer afford to remain ignorant of genetic technologies. They simply harbor far too great a power for both tremendous good and tremendous evil. We must work hard to take every thought captive to Christ and see what there is of benefit and what avenues of research and application we need to avoid to preserve human freedom and dignity. Well let's talk about our genome, the sum total of all our genes. In most of the 100 trillion cells of our body are 46 chromosomes. These chromosomes are tightly coiled and packed strings of a remarkable molecule called DNA (Deoxyribonucleic Acid). DNA is a polymer, a repetitive sequence of four molecules, which I will only refer to by their one-letter abbreviations, A, G, C, and T. The human genome sequence is simply the sequence of these four molecules in DNA from all our chromosomes. If you laid out the DNA from all our chromosomes in each of our cells end to end, it would stretch six feet long. A gene is a segment of DNA that contains the precise coding sequence for a protein. And proteins do all the real work in our cells. By looking at our completed sequence, it is predicted that our genome consists of 30,000 to 45,000 genes in each of our cells. So, now that we have the sequence, what does it mean? We'll begin answering that question in the next section. # What Does the Human Genome Project Hope to Accomplish? The National Institutes of Health in cooperation with several international research organizations began the HGP in 1990 in the U.S. There were four primary objectives among the many goals of the $HGP\{1\}$. The first and primary goal of the HGP was to map and sequence the entire human genome. There is a critical and significant difference between a map and the sequence. There are over three billion letters, or base pairs, in the human genome, spread out over 23 pairs of chromosomes. Trying to locate a sequence of say 1,000 letters, the code for a large protein, is a one in a million task. Therefore, researchers needed a refined roadmap to the genome. The map entails particular sequences that can be used like signs on a road map. If the trait a scientist is studying always seems to be present with this marker, the gene involved is probably nearby. In 1995, a detailed map was published with over 15,000 markers, one for every 200,000 base pairs. This will aid greatly in associating genes with particular diseases. And now with the sequence nearly complete, with over 99% accuracy, determining the precise effect of this gene on disease will be even easier. A second critical goal was to map and sequence the genomes of several important model organisms: specifically, the bacterium E. coli, yeast, the roundworm, fruit fly, and mouse. This information is helpful, because each of these organisms have been used for laboratory studies for decades. Being able to coordinate knowledge of their genomes with cellular and biological processes will certainly inform our study of the human genome and its various functions. The third important objective of the HGP was to systemize and distribute the information it gathered. Any sequence over 2,000 base pairs is released within 24 hours. The sequence and map data is contained in publicly accessible databases on the Internet. The HGP has also been creating software and other tools for large-scale DNA analysis. The fourth and final primary goal of the HGP was to study the ethical, legal, and social implications of genetic research. A full 5% of all funds appropriated for the HGP have been earmarked for these kinds of considerations. There are many concerns revolving around the use of genetic sequence data. Not the least of which are worries about ownership, patenting, access to personal sequence data by insurance companies, potential for job discrimination based on personal sequence data, and the prospects for genetic screening, therapy, and engineering. In the next section we'll begin investigating how the HGP thinks this information can be used. ## What are the Long Term Hopes for the HGP? The completion of the sequence was announced jointly in February 2001 in the journals <code>Nature{2}</code> and <code>Science{3}</code>. Both <code>Science</code> and <code>Nature</code> have made these landmark issues available, without subscription, on their websites. The importance of recognizing the sequence of a particular gene has three important ramifications. [4] The first is diagnosis. Over the last few years, single genes have been found leading to deafness and epilepsy. Numerous genes, however, will influence most diseases in complex ways. Recently, genetic influences have been found in many forms of hypertension, diabetes, obesity, heart disease, and arteriosclerosis [5]. Genetic analysis of cancer tumors may someday help determine the most effective drug therapy with the fewest side effects. Genetic diagnosis has the potential to more precisely prescribe treatments for many medical conditions. Second, diagnosing ailments with more precision with genetics will also lead to more reliable predictions about the course of a disease. Genetic information about an individual's cholesterol chemistry will aid in predicting the course of potential heart disease. Obtaining a genetic fingerprint of a cancerous tumor will provide information concerning its degree of malignancy. Third, more precise genetic information will also lead to the development of better strategies for prevention of disease. Many more ailments in newborns can eventually be screened more specifically to avoid disorders later in life. Currently, babies in the U.S. and other countries are routinely screened for PKU, a metabolic disorder that prevents the breakdown of a specific amino acid found in proteins. This condition becomes toxic to the nervous system, but can be prevented and managed with appropriate diet. Without dietary changes, affected babies face extreme mental retardation. Hopefully, the number of conditions this type of screening applies to can be expanded. Screening can also be done for adults, to see if they may be carriers of potential genetic conditions. Certain Jewish and Canadian populations regularly obtain voluntary screening for Tay-Sachs disease, a known child-killer. This information has been used to help make decisions about future marriage partners. Perhaps the greatest benefit will come from what is called gene-based therapy. Understanding the molecular workings of genes and the proteins they encode will lead to more precise drug treatments. The more precise the drug treatment, the fewer and milder will be the side effects. Actual gene therapy, replacing a defective gene with its normal counterpart, is still very experimental. There are still many hurdles to overcome involving how to deliver the gene to the proper cells, controlling where that gene is inserted into a chromosome, and how it is activated. Not surprisingly, some have seen the human genome sequence as a vindication of Darwin. We'll examine that contention next. ## Did the Human Genome Sequence Vindicate Darwin? Amid the controversy and exultation over the release of the near complete human genome sequence has been a not so quiet triumphal howling from evolutionary biologists. The similarity of many genes across boundaries of species, the seemingly messy patchwork nature of the genome, and the presence of numerous apparently useless repetitive and copied sequences all have been laid out for us as clear validations of evolution. Really! If Darwin were alive today, he would be astounded and humbled by what we now understand about the human genome and the genomes of other organisms. Let's take a closer look at the claims of one bioethicist, Arthur Caplan [6], who thought the major news story was missed. So let's just pick a few of the more glaring statements to help us understand that little in his comments should be trusted. First, Caplan says, "Eric Lander of the Whitehead Institute in Cambridge, Mass., said that if you look at our genome it is clear that evolution must make new genes from old parts." While it may be true that we can see some examples of shared sequences between genes, it is by no means true that we see wholesale evidence of gene duplication throughout the genome. According to one group of researchers, {7} less than 4,000 genes share even 30% of their sequences with other genes. Over 25,000 genes, as much as 62% of the human genes mapped by the Human Genome Project, were unique, i.e., not likely the result of copying. Second, Caplan says, "The core recipe of humanity carries clumps of genes that show we are descended from bacteria. There is no other way to explain the jerry-rigged nature of the genes that control key aspects of our development." Not everyone agrees. The complexity of the genome does not mean, necessarily, that it has been jerry-rigged by evolution. There is still so much we do not know. Caplan is speaking more out of ignorance and assumption than data. Listen to this comment from Gene Meyers, one of the principal geneticists from Celera Genomics, from a story in the San Francisco Chronicle: 'What really astounds me is the architecture of life,' he said. 'The system is extremely complex. It's like it was designed.' My ears perked up. 'Designed? Doesn't that imply a designer, an intelligence, something more than the fortuitous bumping together of chemicals in the primordial slime?' Myers thought before he replied. 'There's a huge intelligence there. I don't see that as being unscientific. Others may, Jerry-rigged? Hardly! Confusing at the moment? Certainly! But more likely to reveal hidden levels of complexity, rather than messy jerry-rigging. It will take more than bluster to convince me that our genome is solely the result of evolution. The earmarks of design are clear, that is, if you have eyes to see. # What are the Challenges of the Human Genome Project? In closing, I would like to address what are many people's concerns about the potential for abuse of this information. While there is great potential for numerous positive uses of the human genome, many fear unintended consequences for human freedom and dignity. Some are justifiably worried about the rush to patent human genes. The public consortium, through the National Institutes of Health, has made all its information freely available and intends to patent nothing. However, there are several patent requests pending on human genes from the time before the HGP was completed. It is important to realize that these patents are not necessarily for the genes themselves. What the patent does protect is the holder's right to priority to any products derived from using the sequence in research. With the full sequence fully published, this difficult question becomes even more muddled. No one is anxious for the courts to try its hand at settling the issue. Somehow companies will need some level of protection to provide new therapies based on genetic information without hindering the public confidence and health. Another concern is the availability of information about individual genetic conditions. There are legitimate worries about employers using genetic information to discriminate over whom they will hire or when current employees will be laid off or forced into retirement. Upwards of 80-90% of Americans believe their genetic information should be private and obtained or accessed only with their permission. The same fears arise as to the legality of insurance companies using private genetic information to assess coverage and rates. A recent bill (June 29,2000) before Congress to address these very concerns was amended to the Health and Human Services appropriations bill, but was removed in committee. The bill will be reintroduced this session. {9} I would be very surprised if some level of privacy protection is not firmly in place by 2002. Moreover, many are apprehensive about the general speed of discovery and the very real possibilities of genetic engineering creating a new class, the genetically enhanced. Certainly, there is cause for vigilance and a watchful eye. I have said many times that we can no longer afford to be ignorant of genetic technologies. And while I agree that the pace of progress could afford to slow down a little, let's be careful not to throw the baby out with the bathwater. After a series of lectures on genetic engineering and human cloning at a Christian high school, one student wrote me to say: I am a senior, in an AP Biology class, and I find genetics absolutely fascinating. It's both fascinating and scary at the same time. . . . [You have inspired me] to not be afraid of the world and science in particular, but to take on its challenge and trust God. Amen to that! **Notes** - 1. "Genetics: The Future of Medicine," NIH, Publication No. 00-4873, 2. - 2. Nature, 409 (15 February, 2001), www.nature.com. - 3. Science, 291 (16 February, 2001), www.sciencemag.org. - 4. Genetics: The Future of Medicine, 9-11. - 5. Kevin Davies, "After the genome: DNA and human disease," Cell, 104 (Feb. 23, 2001), 465-467. www.probe.org/did-the-human-genome-project-prove-that-darwin-w as-right/. - 7. Wen-Siung Li, Zhenglong Gu, Haidong Waing, and Anton Nekrutenko, "Evolutionary analyses of the human genome," *Nature*, 409 (15 Feb 2001):847-849. - 8. Tom Abate, "Human Genome Map Has Scientists Talking About the Divine Surprisingly low number of genes raises big questions," Monday, February 19, 2001, San Francisco Chronicle. - 9. James M. Jeffords and Tom Daschle, "Political issues in the genomic era," *Science*, 291 (16 February, 2001), 1249-1251. - © 2001 Probe Ministries International ## A War of Words in Bioethics Political battles are often won or lost with definitions. Proponents of abortion learned this lesson well. They didn't want to be described as those who were willing to kill innocent life. So they changed the focus from the baby to the woman and emphasized her personal choice. Those who are proabortion called themselves "pro-choice" and supported "a woman's right to choose." Changing the words and modifying the definitions allowed them to be more successful and more socially acceptable. Homosexuals learned the same lesson. If the focus was on their sexual activity, the public would not be on their side. So they began to talk about sexual orientation and alternate lifestyles. Then they began to focus on attacks on homosexuals and argue that teaching tolerance of homosexuality was important to the safety of homosexuals. Again, changing the words and the debate made the issue more socially acceptable. Now this same war of words is being waged over cloning and stem cell research. The recent debate in Congress about cloning introduced a new term: therapeutic cloning. Those who want to use cloning argued that there are really two kinds of cloning. One is reproductive cloning which involves the creation of a child. The other is called therapeutic cloning which involves cloning human embryos which are eventually destroyed rather than implanted in a mother's womb. Representative Jim Greenwood (R-PA) sponsored a bill that would permit this second form of human cloning for embryonic stem cell research while outlawing the first form of cloning to produce children. Although it was put forward as a compromise, pro-life advocates rightly called his legislation a "clone and kill bill." Fortunately, the Greenwood bill was defeated, and a bill banning all cloning sponsored by Representative Dave Weldon (R-FL) passed the House and was sent to the Senate. Another example of this war of words can be seen in the floor debate over these two bills. The opponents of the "clone and kill bill" were subjected to harsh criticism and stereotypes. Both the debate on cloning and the debate on stem cells has often been presented as a battle between compassion and conservatives or between science and religion. Here are just a few of the statements made during the House debate on cloning: Anna Eshoo (D-CA): "As we stand on the brink of finding the cures to diseases that have plagued so many millions of Americans, unfortunately, the Congress today in my view is on the brink of prohibiting this critical research." Zoe Lofgren (D-CA): "If your religious beliefs will not let you accept a cure for your child's cancer, so be it. But do not expect the rest of America to let their loved ones suffer without cure." Jerold Nadler (D-NY): "We must not say to millions of sick or injured human beings, 'go ahead and die, stay paralyzed, because we believe the blastocyst, the clump of cells, is more important than you are.' . . . It is a sentence of death to millions of Americans." Notice too how a human embryo is merely called a blastocyst. Though a correct biological term, it is used to diminish the humanity of the unborn. In the stem cell debate, it was disturbing to see how much attention was given to those who might potentially benefit from the research and how little attention was given to the reality that human beings would be destroyed to pursue the research. Moreover, the claims of immediate success were mostly hype and hyperbole. Columnist Charles Krauthammer called it "The Great Stem Cell Hoax." He believes that any significant cures are decades away. He also points out how it has become politically correct to "sugarcoat the news." The most notorious case was the article in the prestigious scientific journal *Science*. The authors' research showed that embryonic stem cells of mice were genetically unstable. Their article concluded by saying that this research might put into question the clinical applicability of stem cell research. Well, such a critical statement just couldn't be allowed to be stated publicly. So in a highly unusual move, the authors withdrew the phrase that the genetic instability of stem cells "might limit their use in clinical applications" just days before publication. Charles Krauthammer says, "This change in text represents a corruption of science that mirrors the corruption of language in the congressional debate. It is corrupting because this study might have helped to undermine the extravagant claims made by stem cell advocates that a cure for Parkinson's or spinal cord injury or Alzheimer's is in the laboratory and just around the corner, if only those right-wing, antiabortion nuts would let it go forward." So the current debate in bioethics not only brings in Huxley's Brave New World, but also George Orwell's newspeak. The debate about cloning and stem cells is not only a debate about the issues but a war of words where words and concepts are redefined. ©2001 Probe Ministries ## **Human Genetic Engineering** Although much has occurred in this field since this article was written in 2000, the questions addressed by Dr. Bohlin are still timely and relevant. Is manipulating our genetic code simply a tool or does it deal with deeper issues? Dealing with genetic engineering must be done within the context of the broader ethical and theological issues involved. In the article, Dr. Bohlin provides an excellent summary driven from his biblical worldview perspective. # What forms of genetic engineering can be done in human beings? Genetic technology harbors the potential to change the human species forever. The soon to be completed Human Genome Project will empower genetic scientists with a human biological instruction book. The genes in all our cells contain the code for proteins that provide the structure and function to all our tissues and organs. Knowing this complete code will open new horizons for treating and perhaps curing diseases that have remained mysteries for millennia. But along with the commendable and compassionate use of genetic technology comes the specter of both shadowy purposes and malevolent aims. For some, the potential for misuse is reason enough for closing the door completely—the benefits just aren't worth the risks. In this article, I'd like to explore the application of genetic technology to human beings and apply biblical wisdom to the eventual ethical quagmires that are not very far away. In this section we'll investigate the various ways humans can be engineered. Since we have introduced foreign genes into the embryos of sheep, and pigs for years, there's mice, cows, technological reason to suggest that it can't be done in humans too. Currently, there are two ways of pursuing gene transfer. One is simply to attempt to alleviate the symptoms of a genetic disease. This entails gene therapy, attempting to transfer the normal gene into only those tissues most affected by the disease. For instance, bronchial infections are the major cause of early death for patients with cystic fibrosis (CF). The lungs of CF patients produce thick mucus that provides a great growth medium for bacteria and viruses. If the normal gene can be inserted in to the cells of the lungs, perhaps both the quality and quantity of their life can be enhanced. But this is not a complete cure and they will still pass the CF gene on to their children. In order to cure a genetic illness, the defective gene must be replaced throughout the body. If the genetic defect is detected in an early embryo, it's possible to add the gene at this stage, allowing the normal gene to be present in all tissues including reproductive tissues. This technique has been used to add foreign genes to mice, sheep, pigs, and cows. However, at present, no laboratory is known to be attempting this well-developed technology in humans. Princeton molecular biologist Lee Silver offers two reasons. {1} First, even in animals, it only works 50% of the time. Second, even when successful, about 5% of the time, the new gene gets placed in the middle of an existing gene, creating a new mutation. Currently these odds are not acceptable to scientists and especially potential clients hoping for genetic engineering of their offspring. But these are only problems of technique. It's reasonable to assume that these difficulties can be overcome with further research. # Should genetic engineering be used for curing genetic diseases? The primary use for human genetic engineering concerns the curing of genetic disease. But even this should be approached cautiously. Certainly within a Christian worldview, relieving suffering wherever possible is to walk in Jesus' footsteps. But what diseases? How far should our ability to interfere in life be allowed to go? So far gene therapy is primarily tested for debilitating and ultimately fatal diseases such as cystic fibrosis. The first gene therapy trial in humans corrected a life-threatening immune disorder in a two-year-old girl who, now ten years later, is doing well. The gene therapy required dozens of applications but has saved the family from a \$60,000 per year bill for necessary drug treatment without the gene therapy. {2} Recently, sixteen heart disease patients, who were literally waiting for death, received a solution containing copies of a gene that triggers blood vessel growth by injection straight into the heart. By growing new blood vessels around clogged arteries, all sixteen showed improvement and six were completely relieved of pain. In each of these cases, gene therapy was performed as a last resort for a fatal condition. This seems to easily fall within the medical boundaries of seeking to cure while at the same time causing no harm. The problem will arise when gene therapy will be sought to alleviate a condition that is less than life-threatening and perhaps considered by some to simply be one of life's inconveniences, such as a gene that may offer resistance to AIDS or may enhance memory. Such genes are known now and many are suggesting that these goals will and should be available for gene therapy. The most troublesome aspect of gene therapy has been determining the best method of delivering the gene to the right cells and enticing them to incorporate the gene into the cell's chromosomes. Most researchers have used crippled forms of viruses that naturally incorporate their genes into cells. The entire field of gene therapy was dealt a severe setback in September 1999 upon the death of Jesse Gelsinger who had undergone gene therapy for an inherited enzyme deficiency at the University of Pennsylvania. [3] Jesse apparently suffered a severe immune reaction and died four days after being injected with the engineered virus. The same virus vector had been used safely in thousands of other trials, but in this case, after releasing stacks of clinical data and answering questions for two days, the researchers didn't fully understand what had gone wrong. {4} Other institutions were also found to have failed to file immediate reports as required of serious adverse events in their trials, prompting a congressional review. {5} All this should indicate that the answers to the technical problems of gene therapy have not been answered and progress will be slowed as guidelines and reporting procedures are studied and reevaluated. # Will correcting my genetic problem, prevent it in my descendants? The simple answer is no, at least for the foreseeable future. Gene therapy currently targets existing tissue in a existing child or adult. This may alleviate or eliminate symptoms in that individual, but will not affect future children. To accomplish a correction for future generations, gene therapy would need to target the germ cells, the sperm and egg. This poses numerous technical problems at the present time. There is also a very real concern about making genetic decisions for future generations without their consent. Some would seek to get around these difficulties by performing gene therapy in early embryos before tissue differentiation has taken place. This would allow the new gene to be incorporated into all tissues, including reproductive organs. However, this process does nothing to alleviate the condition of those already suffering from genetic disease. Also, as mentioned earlier this week, this procedure would put embryos at unacceptable risk due to the inherent rate of failure and potential damage to the embryo. Another way to affect germ line gene therapy would involve a combination of gene therapy and cloning. {6} An embryo, fertilized in vitro, from the sperm and egg of a couple at risk for sickle-cell anemia, for example, could be tested for the sickle-cell gene. If the embryo tests positive, cells could be removed from this early embryo and grown in culture. Then the normal hemoglobin gene would be added to these cultured cells. If the technique for human cloning could be perfected, then one of these cells could be cloned to create a new individual. If the cloning were successful, the resulting baby would be an identical twin of the original embryo, only with the sicklecell gene replaced with the normal hemoglobin gene. This would result in a normal healthy baby. Unfortunately, the initial embryo was sacrificed to allow the engineering of its identical twin, an ethically unacceptable trade-off. So what we have seen, is that even human gene therapy is not a long-term solution, but a temporary and individual one. But even in condoning the use of gene therapy for therapeutic ends, we need to be careful that those for whom gene therapy is unavailable either for ethical or monetary reasons, don't get pushed aside. It would be easy to shun those with uncorrected defects as less than desirable or even less than human. There is, indeed, much to think about. # Should genetic engineering be used to produce super-humans? The possibility of someone or some government utilizing the new tools of genetic engineering to create a superior race of humans must at least be considered. We need to emphasize, however, that we simply do not know what genetic factors determine popularly desired traits such as athletic ability, intelligence, appearance and personality. For sure, each of these has a significant component that may be available for genetic manipulation, but it's safe to say that our knowledge of each of these traits is in its infancy. Even as knowledge of these areas grows, other genetic qualities may prevent their engineering. So far, few genes have only a single application in the body. Most genes are found to have multiple effects, sometimes in different tissues. Therefore, to engineer a gene for enhancement of a particular trait—say memory—may inadvertently cause increased susceptibility to drug addiction. But what if in the next 50 to 100 years, many of these unknowns can be anticipated and engineering for advantageous traits becomes possible. What can we expect? Our concern is that without a redirection of the worldview of the culture, there will be a growing propensity to want to take over the evolution of the human species. The many people see it, we are simply upright, large-brained apes. There is no such thing as an independent mind. Our mind becomes simply a physical construct of the brain. While the brain is certainly complicated and our level of understanding of its intricate machinery grows daily, some hope that in the future we may comprehend enough to change who and what we are as a species in order to meet the future demands of survival. Edward O. Wilson, a Harvard entomologist, believes that we will soon be faced with difficult genetic dilemmas. Because of expected advances in gene therapy, we will not only be able to eliminate or at least alleviate genetic disease, we may be able to enhance certain human abilities such as mathematics or verbal ability. He says, "Soon we must look deep within ourselves and decide what we wish to become." [7] As early as 1978, Wilson reflected on our eventual need to "decide how human we wish to remain." [8] Surprisingly, Wilson predicts that future generations will opt only for repair of disabling disease and stop short of genetic enhancements. His only rationale however, is a question. "Why should a species give up the defining core of its existence, built by millions of years of biological trial and error?" {9} Wilson is naively optimistic. There are loud voices already claiming that man can intentionally engineer our "evolutionary" future better than chance mutations and natural selection. The time to change the course of this slow train to destruction is now, not later. # Should I be able to determine the sex of my child? Many of the questions surrounding the ethical use of genetic engineering practices are difficult to answer with a simple yes or no. This is one of them. The answer revolves around the method used to determine the sex selection and the timing of the selection itself. For instance, if the sex of a fetus is determined and deemed undesirable, it can only be rectified by termination of the embryo or fetus, either in the lab or in the womb by abortion. There is every reason to prohibit this process. First, an innocent life has been sacrificed. The principle of the sanctity of human life demands that a new innocent life not be killed for any reason apart from saving the life of the mother. Second, even in this country where abortion is legal, one would hope that restrictions would be put in place to prevent the taking of a life simply because it's the wrong sex. However, procedures do exist that can separate sperm that carry the Y chromosome from those that carry the X chromosome. Eggs fertilized by sperm carrying the Y will be male, and eggs fertilized by sperm carrying the X will be female. If the sperm sample used to fertilize an egg has been selected for the Y chromosome, you simply increase the odds of having a boy (~90%) over a girl. So long as the couple is willing to accept either a boy or girl and will not discard the embryo or abort the baby if it's the wrong sex, it's difficult to say that such a procedure should be prohibited. One reason to utilize this procedure is to reduce the risk of a sex-linked genetic disease. Color-blindness, hemophilia, and fragile X syndrome can be due to mutations on the X chromosome. Therefore, males (with only one X chromosome) are much more likely to suffer from these traits when either the mother is a carrier or the father is affected. (In females, the second X chromosome will usually carry the normal gene, masking the mutated gene on the other X chromosome.) Selecting for a girl by sperm selection greatly reduces the possibility of having a child with either of these genetic diseases. Again, it's difficult to argue against the desire to reduce suffering when a life has not been forfeited. But we must ask, is sex determination by sperm selection wise? A couple that already has a boy and simply wants a girl to balance their family, seems innocent enough. But why is this important? What fuels this desire? It's dangerous to take more and more control over our lives and leave the sovereignty of God far behind. This isn't a situation of life and death or even reducing suffering. But while it may be difficult to find anything seriously wrong with sex selection, it's also difficult to find anything good about it. Even when the purpose may be to avoid a sex-linked disease, we run the risk of communicating to others affected by these diseases that because they *could* have been avoided, their life is somehow less valuable. So while it may not be prudent to prohibit such practices, it certainly should not be approached casually either. #### **Notes** - 1. Lee Silver, Remaking Eden: Cloning and Beyond in a Brave New World, New York, NY: Avon Books, p. 230-231. - 2. Leon Jaroff, Success stories, *Time*, 11 January 1999, p. 72-73. - 3. Sally Lehrman, Virus treatment questioned after gene therapy death, *Nature* Vol. 401 (7 October 1999): 517-518. - 4. Eliot Marshall, Gene therapy death prompts review of adenovirus vector, *Science* Vol. 286 (17 December 1999): 2244-2245. - 5. Meredith Wadman, NIH under fire over gene-therapy trials, *Nature* Vol. 403 (20 January 1999): 237. - 6. Steve Mirsky and John Rennie, What cloning means for gene therapy, *Scientific American*, June 1997, p. 122-123. - 7. Ibid., p. 277. - 8. Edward Wilson, On Human Nature, Cambridge, Mass.: Harvard University Press, p. 6. - 9. E. Wilson, Consilience, p. 277. # The Coming Revolution in Science # The Design Inference True scientific revolutions that impact more than a single discipline rarely occur more than once a century. Newton's *Principia*, published in the 17th century, truly qualifies. Darwin's *Origin of Species*, published in 1859, also belongs on the list. Standing in the wings, ready to join these esteemed works and perhaps even overturn the latter, stands William Dembski's *The Design Inference*. {1} This impressive work published by the distinguished Cambridge University Press outlines the mathematical principles necessary to distinguish intelligently caused events from natural events. ust listen to some of the comments from the dust jacket of the book from secular philosophers and mathematicians. One wrote, "Dembski has written a sparklingly original book. Not since David Hume's *Dialogues Concerning Natural Religion* has someone taken such a close look at the design argument." Being put in the same sentence as David Hume is no small potatoes. Mathematician David Berlinski warns, "Those who agree with its point of view will read it with pleasure, and those who do not will ignore it at their peril." has rigorously detailed the key trademark of intelligent causes, what he calls specified complexity. The term specified refers to the notion that an event conforms to an independently given pattern. Complexity refers to an event of small probability. For instance, people win improbable lotteries all the time. The odds are usually in the millions But when the number of tickets purchased is considered, nobody questions the legitimacy of *someone* holding the winning ticket. This would be an event of small probability without any specification. Somebody will win, but nobody can predict whom. But let's propose that the same person wins the same lottery three times in a row! Suddenly there is an independent pattern and we immediately become suspicious that more than just chance is involved. We now have an event of extremely small probability that also conforms to a pattern or is specified. The most likely cause for such an event is that someone has intelligently tampered with the lottery. Dembski boldly suggests that these same principles can be applied to the question of the origin of life and other evolutionary questions and still maintain the integrity of science. While Dembski has been sharply criticized by the evolutionary establishment, to their discredit, their critiques have been largely emotional and dismissive. No one has successfully challenged the heart of his thesis. Now before you decide to run out a get a copy, please be advised that this book is not for the casual reader. Loaded with technical jargon and symbolic logic, you had better haven eaten your mental Wheaties before tackling this one. But Dembski has written a scaled down version, which I will now discuss. # Hasn't Science and Philosophy Ruled Out Design? William Dembski's groundbreaking book, *The Design Inference* from Cambridge University Press, is highly technical. Dembski has therefore written a follow-up book titled, *Intelligent Design: The Bridge between Science and Theology*, {2} which is more accessible to the general reader. *Christianity Today* has named it their 1999 Book of the Year in the "Christianity and Culture" category. Listen to a few sound bites from comments of those recommending Dembski's Intelligent Design. A quantum chemistry professor from the University of Georgia says, "William Dembski is perhaps the very brightest of a new generation of scholars." A professor of philosophy from the University of Texas says, "William Dembski is the Isaac Newton of information theory." Another university professor proclaims "If Dembski is right, and I believe he is, then it is unscientific to deny the existence of God." Wow! Unscientific to deny God! Do you think that comment is rankling a good number of evolutionary biologists? Finally, another University of Texas professor of government goes further by claiming that "Dembski strengthens the case for saying that our deepest moral inclinations not only look designed, they are." Let me now begin to satiate your curiosity by telling you a little more about this groundbreaking work. The book is divided into three parts. In the first part Dembski gives a historical backdrop to the current controversy over design. In academia, the design argument has been considered dead for over 150 years. Dembski identifies two major reasons for this demise of design. The first was the continual attack on miracles, which culminated in the 18th and 19th century. Dembski cogently explains that their arguments don't work. The second blow to design came from Darwin's Origin of Species. Darwin dismissed the prevalent British natural theology of his day by not so much refuting it, but by announcing that it simply wasn't scientific. Dembski quotes evolutionary philosopher David Hull, "He dismissed it not because it was an incorrect scientific explanation, but because it was not a proper scientific explanation at all." Darwin's faulty conception of science is still with us and Dembski sets out to refute it. The criteria used by the British natural theologians were naive in the sense that they believed that design was self-evident. This led to far too many false positives, that is, assignments of design that were later proved to be naturalistic. The design argument was forced to retreat. In the second part of *Intelligent Design*, Dembski articulates the principles laid out in his *The Design Inference* for the general reader. # What Does a Theory of Design Look Like? Having told you about Dembski's work and the impact it is beginning to have, I will summarize Dembski's prescription or cure for the rule of naturalism in science. {3} No one in the design movement as far as I know seeks to invoke God at every turn as an explanation for natural phenomena. So why bring God into the picture at all? For most scientists, God is only a hypothesis, and an unnecessary one at that. But beyond the ordinary operation of nature is its order. Dembski references Einstein's remark that the most incomprehensible thing about the universe is that it is comprehensible. This order must come from outside the universe or from within. But science tells us today that the only allowable answer is that it comes from within. This naturalistic philosophy has become a form of idolatry. Nature becomes the do all and end all. As Dembski says, "Rather it is a matter of investing the world with a significance it does not deserve." [4] Naturalism is pervasive in the culture. Even most Christians think and live naturalistically without realizing it. So how can naturalism be defeated? What is needed, says Dembski, is a means of detecting God's actions in the natural world. In other words there must be a reliable way to distinguish natural causes from intelligent causes. Some sciences already employ such methods such as forensic medicine, cryptography, archeology, and even the SETI program, the search for extraterrestrial intelligence. SETI depends on the ability to distinguish an intelligent message from space from the surrounding radio noise. This can be done without necessarily understanding the message or knowing the message sender. This brings up another crucial point of intelligent design. Dembski says that intelligent design is theologically minimalist. {5} By this he means that intelligent design empirically detects design without speculating about the nature of the intelligence. This is crucial to answer the critics who accuse design theorists of simply wanting to bring the Bible into science. If one detects design or concludes that a particular natural phenomena contains the necessary earmarks of design, that's all that needs to be said. One can personally reflect on the nature of this intelligence, but it is not a part of the scientific test. Dembski calls for a new generation of scholars open to pursuing intelligent causes in the universe. Here at Probe we're committed to helping find, select, and train such potential scholars to take part in a true scientific revolution. # Does Intelligent Design Offer a Bridge between Science and Theology? In this review and summarization of Dembski's insights let's now explore the future Dembski foresees for the dialogue between science and theology. {6} Of course most within the scientific community see no future at all for such a discourse. Most within modern academia hold to either of three models that Dembski labels as conflicting, complementing, or compartmentalizing. Most of us are very familiar with the conflict model. Most who call themselves rationalists or secular humanists would subscribe to this view. Basically they see science as having explained all of reality and that there is no room for theology at all. I once attended a conference where a theology professor was so intimidated by this view that he said that theology was a dead discipline and would cease to exist in twenty years. Stephen J. Gould, a Harvard paleontologist, and the National Academy of Sciences have advocated the compartmentalization view. Basically they maintain that science and theology inform different parts of reality—science the realm of facts and theology the realm of morals and faith. There is no conflict and also no dialogue between the two. It is also not hard to see that this view basically rules theology out of any important discussions about real facts. Theology inhabits only the fuzzy world of morals, which must be relative if naturalism rules in science. Similar is the complementarity view, which essentially states that science and theology can actually inform the same reality, but their language is so foreign to the other that no meaningful discourse can take place. Both are necessary to give a complete account of reality, but you can forget about the two ever talking to each other. In one way or another, each of these three views will eventually rule theology as irrelevant to the important questions and a fully naturalistic science will eventually be the wellspring for all useful information and discourse. But as you might expect, Dembski offers a fourth view and argues that it is the only proper view of the two disciplines. Dembski compares science and theology to two different windows that view the same reality. Since the windows are different, they gain a different perspective. But since they are viewing the same reality, what is seen from each window can in many cases be meaningfully related. Both science and theology may on occasion, be capable of further explaining observations from each window. He offers the current discussion concerning the cosmology's Big Bang and theology's act of Creation as an example. If the Big Bang is true, then Christianity's theology of creation *ex nihilo* is a better explanation than naturalism's attempt to explain something from nothing. There is much more work to be done here as Dembski readily admits, but the tone and direction is very refreshing. # What Are the Standard Objections to Design in Science? There is the potential of the intelligent design movement bringing about a revolution in science. I have summarized the work of William Dembski, a double Ph.D. in philosophy and mathematics with a Master's of Divinity thrown in for good measure. In the appendix of his much acclaimed book, Intelligent Design: The Bridge between Science and Theology, Dembski investigates several of the more common objections to intelligent design. To conclude this review I will examine one of these objections. Dembski states the first objection this way, "Design substitutes extraordinary explanations where ordinary explanations will do and thereby commits a god-of-the-gaps fallacy." Those believing that God used evolution as His means of creation usually voice this objection. This view is motivated by the tremendous history of naturalistic science in explaining very difficult natural phenomena by natural means. This often occurs after someone has claimed that God was necessary to explain a particular observation. Isaac Newton thought divine intervention was necessary to explain the irregularities of planetary orbits. It was eventually shown that these irregularities were periodic and not random and thus explainable by natural law. {7} Newton was widely criticized for this view, and many Christians fear that appealing to design now will end up in ridicule later when natural processes may also explain contrivances of intelligent design later. While this fear is understandable in the light of history, there are considerable differences. Design does not claim to simply explain what we do not understand. Rather, intelligent design is attempting to demonstrate a real solution to problems based on what we know about design, not what we don't know about natural explanations. Besides, if we believe that the laws of nature are incapable of producing certain natural phenomena, such as the genetic code of DNA, just how long are we supposed to keep looking for a naturalistic solution instead of looking elsewhere? This puts shackles on scientific inquiry and stifles new ideas. Certainly we should attempt to exhaust all known naturalistic possibilities before pursuing a design answer. But fear of failure should not be our deterrent. There is always risk in proposing new scientific ideas and hypotheses. The risk is that you just might be wrong. But this has never permanently hindered the proposal of a new idea. Failure should be a constant risk in science. Otherwise nothing new will ever be discovered. "Not all gaps are created equal. To assume that they are is to presuppose the very thing that is in question, namely, naturalism." [8] William Dembski has issued a strong challenge through his books and more are to follow from others dealing with the philosophy and science of intelligent design. The next several years should be very exciting indeed. #### **Notes** - 1. William A. Dembski, *The Design Inference: Eliminating Chance by through Small Probabilities* (Cambridge, England: Cambridge University Press, 1998). - 2. William A. Dembski, *Intelligent Design: The Bridge between Science and Theology* (Downers Grove, IL: InterVarsity Press, 1999). - 3. Ibid., 97- 121. - 4. Ibid., 101. - 5. Ibid., 107. - 6. Ibid., 187-210. - 7. Nancy Pearcey and Charles Thaxton, *The Soul of Science:* Christian Faith and Natural Philosophy, Wheaton, IL: Crossway Books, 1994), 91-92. - 8. Dembski, Intelligent Design, 245. - © 2000 Probe Ministries # Darwinism Takes a Step Back in Kansas ### Has Oz Returned to Kansas? Suddenly, the mere mention of the Kansas State Board of Education in most educational and academic circles brings derisive giggles and sneers. In August the Kansas State Board of Education voted to remove references to macroevolution from state science testing standards. A wave of revulsion gripped the nation's media. In *Time* magazine, Harvard University paleontologist Stephen J. Gould trumpeted, "The board transported its jurisdiction to a never-never land where a Dorothy of the new millennium might exclaim, 'they still call it Kansas, but I don't think we're in the real world anymore.'"{1} Gould further belittles honest concerns about the teaching of evolution by proclaiming: (1) no other nation has endured any similar movement (this makes us look bad overseas); (2) evolution is as well documented as any phenomenon in science (it is perverse to call evolution anything but a fact); and (3) no discovery of science can lead us to ethical conclusions (believe what religion you want, science doesn't threaten you). That's a pretty scathing reaction. Let's see what else we can find. Here's one from nationally syndicated columnist Ellen Goodman of the Boston Globe. {2} Ms. Goodman declared that "removing evolution from the science curriculum is a bit like removing verbs from the English curriculum. Evolution can still be taught, but it's no longer required, it won't be tested, and it will be discouraged." (However, natural selection, variation, and microevolution will still be recommended and tested.) Later she decries the fact that "In creationists dragged a young biology teacher, John Scopes, to the courtroom for the infamous 'Monkey Trial.'" Actually it was the ACLU that dragged Scopes into the courtroom. He couldn't even remember if he had actually taught evolution. They needed a "volunteer" to defend to test the new Tennessee law. (See Phillip Johnson's Defeating Darwinism By Opening Minds, 1997, IVP, Chapter 2 for the real story of the Scopes trial and its shameful portrayal in the play and film, Inherit the Wind.) Goodman also pontificates that "there is no serious scientific dispute about the fact of evolution." Notice that Ms. Goodman indicates that evolution is a fact, therefore beyond question. She also cleverly indicates that if you dispute evolution, you must not be a serious scientist. In the Seattle *Post-Intelligencer*, Sean Gonsalves laments, "Educated people everywhere are still in shock over the appalling ignorance displayed by the Kansas state board of education that voted two weeks ago to effectively remove evolution and the 'Big Bang' theory from the state's science curriculum. Is there still a science curriculum in Kansas?" {3} Well, those unruly, ignorant anti-evolutionists really seem to have overstepped their bounds this time! You would think that we would be cowering in the corner somewhere after all the abuse from such heavy hitters, but no, actually, we're quite ecstatic. I have given you only a small example of the media and science firestorm, but it is just more of the same. While nobody enjoys being the butt of jokes and verbal abuse, what is significant are two things. First, the Kansas board has dealt Darwinists a severe blow by not mandating creation, thereby eliminating Darwinist's usual rallying cry of science versus religion. They have simply searched for a more objective means of presenting evolution. That's tough to argue against. Second, Darwinists have been flushed out into the open. Flimsy, ad hominem attacks, appeals to authority, and question begging have been brought out in the open for all to see. The Kansas State Board of Education has unintentionally raised the stakes in the decades old creation/evolution discussion. # What Really Happened in Kansas? Given the reaction to the decision by the Kansas State Board of Education you would have thought the six board members who voted for the new standards in a close 6-4 vote were part of some dastardly plan to underhandedly bring God into the classroom. Also seemingly at stake was the reputation of the whole state of Kansas if its citizenry did not rise up in revolt against such an irrational decision. Apparently, Kansas had been set back decades in science literacy. Well, what actually happened in Kansas? What did the board actually do and why? It is important to realize that the Kansas board authorized a 27-member panel of scientists and science educators from the state to revise the current state science testing standards. These standards do not mandate what can and cannot be taught, only what likely will be included on state science tests. What the board received was a highly prejudicial document making evolution the single unifying concept to the state's biology standards. When board chairwoman Linda Holloway asked the committee representatives for evidence of macroevolution they essentially replied, "We're the experts, and that will have to do." {4} What that means is that she received no evidence, just an admonition that, with their position as scientists, she should just trust them. Rather than turn the Kansas high school classrooms into a propaganda machine for materialist philosophy, the board decided tο amend the standards to maintain microevolution-natural selection acting on variation—but not macroevolution¾the claim that microevolution leads to new complex adaptations and new genetic information. They also left it up to the individual school districts to determine how much or how little evolution to teach. Evolution was not removed from the curriculum, as so many news stories reported. Creation was not mandated, Darwin was not banned, and evolution was not censored. What this *does* do is leave open to school districts the opportunity to teach the surging controversy surrounding evolution. Actually, what many in the intelligent design movement would have preferred, if possible, is to teach more evolution, not less. Meaning, let's teach not only the evidence for evolution, but also the mounting evidence calling the naturalistic creation story into question. Students should be familiar with evolution. It is the major story of origins within the scientific community. But in the interest of a true liberal education, the serious questions regarding evolution should also be included. Students should be allowed the privilege of weighing the evidence for themselves, not just accepting it because their teacher tells them to. This is really where the threat to the scientific community lies. The more doubt about evolution that's allowed, the trickier the educational landscape becomes for a fully naturalistic, materialistic approach to education. In the past, the media barrage over such an anti-evolutionary decision has been decidedly one-sided. What is significant this time is that the Kansas board has received some rather hefty and significant support from invited articles, guest columnists, and op-ed pieces in prestigious news outlets such as the Wall Street Journal, the Washington Post, the Chicago Tribune, and the Washington Times. The debate is indeed changing. # Some Surprising Support for Kansas Board of Education Amidst the unusual rancor and indignation from the media and scientific community following the decision of the Kansas State Board of Education, many have missed the small, yet significant, support the board has received for the spirit of their decision: namely, to try to find a way to disrupt the universal agenda to present scientific naturalism as the only possible explanation of where we all came from. On August 16, 1999, the Wall Street Journal published an article by UC Berkeley law professor and Darwinian critic, Phillip Johnson. [5] Johnson quotes a Chinese paleontologist who openly criticizes Darwinism as wryly commenting that "In China we can criticize Darwin but not the government. In America you can criticize the government but not Darwin." After summarizing the frantic response of scientists and educators, Johnson commented, "Obviously, the cognitive elites are worried about something a lot more important to themselves than the career prospects of Kansas high school graduates." Johnson pointed out that evolution is the main scientific prop for scientific naturalism, a philosophical system that leaves God totally out of its picture of reality. Quoting well-known scientists such as Carl Sagan, Richard Dawkins, Stephen J. Gould, and Richard Lewontin, Johnson makes clear that this is the real battle. Allowing evolution's flaws to be detailed in classrooms would allow a broader discussion of fundamental assumptions. Johnson concluded optimistically, "Take evolution away from the worldview promoters and return it to real scientific investigators, and a chronic social conflict will become a chronic intellectual adventure." A few days later, the Washington Times [6] chided the rest of its media cohorts for a vast overreaction and actually cited evidence that calls Darwinism into question. The friendly editorial concluded with "No one, and certainly not the Kansas Board of Education, is saying that evolution should not be taught; it remains the prevailing scientific theory of creation. Rather, some healthy agnosticism and scientific open-mindedness on the matter would seem to be in the best interest of everyone curious about the greatest mystery of all." Hear, hear! The Chicago Tribune, while openly critical of the action of the Kansas Board of Education, also criticized previous actions of the National Association of Biology Teachers concerning evolution. {7} The association initially used the words unsupervised and impersonal to describe the evolutionary process. These clearly non-scientific terms were eventually and reluctantly removed by the association, who explained they didn't think the terms would be construed negatively, which the Tribune called either a lie or clear demonstration of scientific fundamentalism. Finally, the Washington Post{8} printed an article by Jay Richards, senior fellow and program director of the Discovery Institute's Center for the Renewal of Science and Culture. The CRSC is currently the only think tank I know of that openly supports and endorses intelligent design. Richard's final point, "Fairness and objectivity in the science classroom require that teachers teach the controversy, not deny its existence," is fair, lucid, rational, and appealing. "Teach the controversy" has become a rallying cry. You are bound to hear it more and more. The debate in Kansas has resulted in similar debates around the country, to which we now turn our attention. ### Darwinism Assailed in Other States Following the recent decision by the Kansas State Board of Education the teaching of evolution was big news around the country. In Kansas there were roundtable discussions, lectures, and debates. Some were in academic settings, such as the University of Kansas and Washburn University, some were in churches, and some were sponsored by a humanist skeptic organization. The American Association for the Advancement of Science (AAAS) was prompted to publish their own statement deploring the action taken by the Kansas Board of Education. {9} You might think that all the negative publicity would cause other states to back off any changes in their own science curriculum. But apparently, all this publicity has encouraged other school boards to chart their own course or adopt the methods of other states before them. The Oklahoma State Textbook Committee voted to adopt a disclaimer to be placed on the inside cover of all biology textbooks. Unhappy with the propaganda-like treatment of evolution in the majority of textbooks they looked at, the committee needed the disclaimer to be able to recommend a sufficient diversity of biology texts for the state. While arguably not the best statement on the subject, the disclaimer labels evolution as controversial, a separation of microevolution and macroevolution, and encourages students to study hard, keep an open mind, and perhaps they can contribute to the origins discussion in the future. Nothing is said about creationism, intelligent design, or any other theories. Basically the statement wants students to think critically about evolution. What has been missed in the newly swirling controversy about the disclaimer in Oklahoma is that it is nearly a direct copy of the disclaimer adopted by Alabama over two years ago which has not been challenged in court. However, instead of mentioning the obvious connection, journalists attempted to draw parallels to a Louisiana school district directive that was recently struck down because it specifically mentioned creationism. The two disclaimers are not related, but in the attempt to make it look as bad as possible, the chosen tactic is to mislead. {10} Once again, a very reasonable, but not perfect resolution was dismissed as simply another attempt to smuggle creationism into the public schools. Meanwhile in West Virginia a similar controversy hit the news. The Kanawha County Board of Education is considering a resolution that would allow for the teaching of theories for and against the theory of evolution. It soon came to light that Illinois and Kentucky had previously passed resolutions similar to the one in Kansas. Commentary and editorials were appearing in major and local newspapers across the country taking sides in a suddenly public and heated discussion. Clearly, something has changed. The usual evolutionist handwringing is sounding more like whining and the previously unheard-of support for a revision of the instruction in evolution is suddenly receiving a cautious but receptive ear in important academic, educational, and media circles. While it must be kept in mind that all of these "victories" are relatively small and can be easily overturned, nonetheless their simplicity, objectivity, and legal savvy are raising eyebrows that paid little attention before. #### What Does All This Mean? The flurry of nationwide activity concerning the teaching of evolution in our public school systems, while noteworthy, is not terribly new. This battle has been going on for over three decades, but with seemingly little change. However, this time, as I have documented, there has been surprising support and very public discussion over the last few months. Phillip Johnson and others have been invited or allowed to offer their impressions and rebuttals in newspapers, journals, and magazines across the country. Public lectures, debates, and roundtable discussions have been offered before large crowds. Something has definitely changed. I think we can isolate the change in two places. First some of the cherished, misleading evolutionary explanations are being rebutted openly and decisively in these public discussions. Second, the public is becoming better educated on the issues involved and they are less intimidated by the evolutionary rhetoric. One of the favorite lines used to dismiss critics of evolution is to label them as religious zealots and fundamentalists. Religion and science, says this argument, have nothing to say to one another so you can't bring religion into the science classroom. Stephen Gould states the case in his usual journalistic style, "Science and religion should be equal, mutually respecting partners, each the master of its own domain, and with each domain vital to human life in a different way." [11] Elsewhere it becomes plain that Gould means that science deals in facts and religion in the intangibles of morality and such. This is seen more and more as condescending nonsense. Other evolutionists like Douglas Futuyma readily admit that, "By coupling undirected, purposeless variation to the blind, uncaring process of natural selection, Darwin made theological or spiritual explanations of life processes superfluous."{12} The negation of a theological principle is itself, a theological principle. Besides, any theory which purports to explain where we came from will contain the seeds of ethics and morality. Robert E. Hemenway, chancellor of the University of Kansas, tried to say that the Kansas decision is a rejection of science altogether. {13} But when you actually read what the Board of Education did, they actually expanded the coverage of evolution from the previous standards and required students to know a very decent description of Darwinian evolution. {14} Skepticism is healthy in science. The new standards actually promoted questioning and critical thinking. This kind of obfuscation was not so easily foisted on the public. The educational effort of many organizations over the past several decades has begun to yield citizens surer of themselves and not so easily intimidated. Seeing articles appearing in major news outlets like the Wall Street Journal, the Washington Times, and the Chicago Tribune, as well as appearances on CNN, have galvanized popular opinion and provided means to critically counterattack the bluster of the opposition. Although the coverage has not always been accurate and completely positive, and the actual decisions by education boards have not always hit the mark, the net effect has been a major opening up of the debate. Change has been accomplished in these few months that would have ordinarily taken years. As mentioned previously, the phrase "teach the controversy" will be found more and more in the public discussion. That's exactly what needs to happen. #### **Notes** 1. Stephen Jay Gould, "Dorothy, It's Really Oz, 1999," *Time* vol. 154, no.8 (August 23, 1999), 59. - 2. Ellen Goodman, "Those Ever-Evolving Creationists," *Boston Globe*, Aug. 19, 1999, A19. - 3. Sean Gonsalves, "Kansas School Board Fighting the Wrong Theory," Seattle Post-Intelligencer, August 24, 1999, All. - 4. Jeremy Johnson, "Media Pigeonholes Board into Stereotype," *Kansan*, August 19, 1999. - 5. Phillip E. Johnson, "The Church of Darwin," Wall Street Journal, August 16, 1999, A14. - 6. "Editorial, Kansas Conundrum," Washington Times, August 19, 1999, A16. - 7. Steve Kloehn, "In a Word, Kansas Tries to Make Evolution Go Away," *Chicago Tribune*, August 20, 1999, 10. - 8. Jay Richards, "Darwinism and Design," Washington Post, August 21, 1999, A19. - 9. "AAAS Statement on the Kansas State Board of Education Decision on the Education of Students in the Science of Evolution and Cosmology," *Science*, vol. 286 (November 12, 1999), 1297. - 10. Diane Plumberg, "Panel Plunges State into Debate about Evolution," Daily Oklahoman, November 12, 1999. - 11. Gould, 59. - 12. Douglas J. Futuyma, *Evolutionary Biology*, 3rd ed. (Sunderland MA: Sinauer Assoc., 1998), 5. - 13. Robert E. Hemenway, "The Evolution of a Controversy in Kansas Shows Why Scientists Must Defend the Search for Truth," *Chronicle of Higher Education*, October 29, 1999, B7. - 14. Jonathan Wells, "Ridiculing Kansas School Board Easy, But It's Not Good Journalism," *Mitchell (South Dakota) Daily Republic*, October 14, 1999. # Mere Creation: Science, Faith and Intelligent Design An unprecedented intellectual event occurred in Los Angeles on November 14-17, 1996. Under sponsorship of Christian Leadership Ministries, Biola University hosted a major research conference bringing together scientists and scholars who reject naturalism as an adequate framework for doing science and who seek a common vision of creation united under rubric of intelligent design. The two hundred participants, primarily academics, formed a nonhomogeneous group. Most had never met each other. Yet virtually all the participants questioned the reigning paradigm biologynamely, that natural selection and mutation can account for the origin and diversity of all living things. {1} So said Dr. Henry F. Schaefer III, professor of chemistry at the University of Georgia, author of over 750 scientific publications, director of over fifty successful doctoral students, and five-time Nobel nominee, in his foreword to the 1998 book, *Mere Creation: Science, Faith and Intelligent Design.* {2} I was privileged to be one of the two hundred participants at this historic conference which, along with the subsequent book, form the backbone of future direction of the fledgling intelligent design movement. I would like to highlight significant chapters from this book and provide additional resources to learn more about this important challenge to Darwinism. Along the way I hope you will gain a glimpse of how important this movement is to the future not just of biology, but of science education as a whole in this country and around the world. Jonathan Wells is a post-doctoral research biologist in the department of molecular and cell biology at the University of California at Berkeley. His Ph.D. is from the same institution in developmental biology. In his chapter, "Unseating Naturalism," {3} Wells lists several important insights from developmental biology that seriously challenge a purely naturalistic biologic science. Since 1983, homeotic genes have been the rage in evolutionary developmental biology. First discovered in fruit flies, these genes appear to act as switches to turn on a series of genes important for sequential levels of development. Of interest to evolutionists, is the fact that many of the same genes found in fruit flies are also found in almost every other animal group, all acting as developmental switches. They are even frequently found on the same chromosome and in the same order from species to species. Such evidence seems quite a compelling argument for all life forms evolving from a common ancestor. But Wells quickly points out that these genes do not control the same body structures from species to species, so an evolutionary explanation does not fit so well. "If the same gene can 'determine' structures as radically different as a fruit fly's leg and a mouse's brain or an insect's eyes and the eyes of humans and squids, then that gene is not determining much of anything." {4} There is no current mechanism to understand how a homeotic-switching gene can change from coding for one function to another in different organisms. Suddenly, this new great evidence of evolution is yet another problem for evolutionary biology. Wells goes on to point out that intelligent design has no trouble incorporating similar switches in different organisms just as an engineer understands the use of similar ignition switches in different kinds of vehicles. Wells concludes that, "A design paradigm can nurture the sort of formal and teleological thinking that will enable biologists to discover the laws of development that have so far eluded them." {5} The reason for the elusion is the shackles of Darwinism. ## **Redesigning Science** In taking a close look at the book, *Mere Creation*, edited by Bill Dembski, I would like to explore Dembski's own contribution to the volume, "Redesigning Science." [6] If the name Bill Dembski is unfamiliar to you, it won't be for long. Dembski is an extremely bright and articulate young man with earned doctorates in mathematics from the University of Chicago and philosophy from the University of Illinois at Chicago along with an M. Div. from Princeton Theological Seminary. Dembski is also the author of perhaps the most significant book to date in the intelligent design movement, *The Design Inference: Eliminating Chance through Small Probabilities*[7], from the prestigious Cambridge University Press. Bill is also confident. He is confident that intelligent design can thoroughly reshape the horizons of science in the next twenty years. He begins his chapter with a whimsical scenario recounting a "nightmare" potentially experienced by Harvard paleontologist and vocal anti-creationist, Stephen Jay Gould. The nightmare includes Gould no longer teaching at Harvard, relegated to leading field trips to the Galapagos Islands and the Burgess Shale in the Rocky Mountains of Canada, with Phil Johnson and cronies firmly in control of the National Science Foundation. {8} While Dembski admits that the nightmare is hopefully not realized in all its details, the notion of design claiming primacy within science is clearly the objective. In order for this objective to be realized, design must be specifically and rigorously defined. I'll allow Dembski to explain in his own words. The key step is to delineate a method for detecting design. Such a method exists. We use it implicitly all the time. . . . The method takes the form of a three-stage explanatory filter. Given something we think might be designed, we submit it to the filter. If it successfully passes all three stages of the filter, then we are warranted asserting it is designed. Roughly speaking, the filter asks three questions, and in the following order: Does a law explain it? Does Chance explain it? Does design explain it? In trying to classify an event as either due to natural law, chance, or design, we first try to assess if it is an event of high probability and therefore due to some recognizable natural law. A bullet firing when a gun's trigger is pulled or getting at least one head when a fair coin is tossed a hundred times are both high probability events due to natural law. Rolling snake eyes with a pair of fair dice, or even winning a million dollar lottery when considering how many tickets are sold, constitute events of intermediate probability that are justly relegated to chance. But let's say the same person wins that lottery three times in a row or even twice in a row. Suddenly we suspect that something more than chance is involved. Dembski's own example is Nicholas Caputo, the county clerk of Essex County, New Jersey. Caputo was responsible for determining the order in which candidates appeared on the ballots for elections. Caputo was a Democrat and 40 out of 41 times the Democrats were listed first, which everyone agrees, gave them a slight advantage. We intuitively use the explanatory filter to classify these events as designed because they are of small probability and they conform to a pattern. Thus intelligent design combines small probability with what Dembski terms, "specified complexity." Dembski and the other authors of *Mere Creation* believe we can apply the same test scientifically to physical, chemical, and biological events. ## The Explanatory Power of Design One of the critical questions for intelligent design is its ability to explain at least some natural phenomena more completely than naturalistic science. Stephen Meyer addresses this problem in his chapter, "The Explanatory Power of Design." [10] Steve Meyer is professor of philosophy at Whitworth College in Spokane, Washington, with a Ph.D. in the history of and philosophy of science from Cambridge University, England. As an example of design's explanatory power, Meyer chooses to explore the origin of information within living systems, specifically the origin of the genetic code. Meyer brings a scholarly appraisal to the subject since his Ph.D. dissertation concerned the history and status of origin of life research. Meyer summarizes the extreme problems origin of life research has encountered in the last thirty years, highlighting along the way the important work by Charles Thaxton and Walter Bradley.{11} Following the euphoria of the famous experiment by Miller and Urey in 1953, the origin of life community has suffered setback after setback. Miller and Urey demonstrated that a mixture of methane, ammonia, water and hydrogen could be induced to produce, among many other organic compounds, a few amino acids, the building blocks of proteins. Subsequent work showed that this hypothetical atmosphere was pure mythology. So was the notion of a prebiotic soup of biochemical building blocks.{12} Beyond the purely biochemical difficulties of origin of life research looms the immense problem of accounting for the origin of complex specified information contained in biomolecules, and specifically in DNA and the genetic code. In the computer age we are often amazed at the speed and storage capacity of modern personal computers, particularly the laptop variety with their 12 gig hard drives and 500 MHz speeds. We seldom realize, however, that "the information storage density of DNA, thanks largely to nucleosome spooling, is several trillion times that of the most advanced computer chips." {13} So not only is there real information stored in DNA, but it is stored at a density on a molecular level, we can't even approach with our best computers. So just where did this information come from? Attempts to account for the origin of biological information by natural biochemical means have utterly failed. The odds of achieving even a small 100 amino acid protein are less than 1 in 10 ¹²⁵. Events of that small a probability just don't happen. Not only that, but researchers now realize that natural forces are incapable of achieving the formation of bio-information by any process. At first, some thought that maybe the amino acids and nucleotides had some natural affinity for each other to help account for the specific sequences of proteins and DNA. When that turned into a dead end, some hoped that some sort of natural selection of molecules might help. But natural selection requires reproducing cells. So-called "self-organization" processes only provide low level order, like ripples in the sand, not informational messages like "JOHN LOVES MARY" written in the sand. Scientific laws will only describe ordered natural phenomena, like the structure of a crystal, which bear no relationship to the specified complexity within biomolecules. Instead, our experience with informational codes and languages indicates that they always come from an intelligent source. Therefore mind or intelligence stands as the only possible source for the information in DNA, proteins and cells as a whole.{14} # **Applying Design within Biology** Have you ever wondered how a baby is formed from a single cell in just nine months? You could ask the same question of just about any animal from wasps to caterpillars to frogs to clams. A fully functioning organism is a symphony of integrated parts performing in coordinated fashion to make beautiful music. But where did all the orchestra members (or proteins) come from? And who told them where to sit? And how do they know when and what to play? And what about tempo and volume and on and on? Well, you get the picture. Biological organisms are immensely complex, but they all start out as single cells. Somehow they turn into assemblages of different cells and tissues that all know their places and roles. Embryological development has long been a mystery and its secrets are only slowly being revealed. It has also turned into a potentially fruitful battleground between evolution and intelligent design. Paul Nelson recently received his Ph.D. in philosophy from the University of Chicago and is currently doing post-doctoral work at the same university in evolutionary and developmental biology. The connection between embryological development and evolution is significant because, in order for organisms as diverse as hawks and starfish to evolve from a common ancestor, they must change not only their outward appearance but also the developmental process that starts as single cells for both. Nelson's "Applying Design within Biology" explores the connection and its inherent contradictions. {15} A major observation of embryology has been that developmental mutations are usually harmful and often fatal. And the earlier in the developmental process the mutation occurs, the more likely the effect will be harmful. This led most embryologists to believe that evolutionary changes utilize mutations that appear relatively late in embryological development. Subsequently Darwinists predicted that the further back you go in comparing two organisms' patterns of development, the more similar they will be. Unfortunately for evolution, this is not true. There is wide diversity of early cleavage patterns of cells in embryos from species that can actually be closely related. One author went so far as to refer to this as "intellectually disturbing." {16} Such a dramatic reversal would, you would think, cause many or at least some developmental biologists to question the validity of Darwinism. But as I have indicated so many other times in other essays, Darwinism is assumed, not questioned. Biologists mainly concluded that change in early development is doable after all and quite common. But as Nelson aptly summarizes, "There is little if any experimental evidence that 'changes in early development are possible.'"{17} While the diversity of pathways to similar ends in development is a problem for evolutionary developmental biology, it is an expectation of intelligent design. The sheer magnitude of instructions for embryological progress screams for a design perspective. Design is also found in the newly discovered redundancy of developmental pathways. Knocking out a seemingly essential gene can sometimes have no effect whatsoever. Built-in redundancy is a hallmark of design, not chance mutations and natural selection. Nelson basically believes that any element of an organism necessary for survival and reproduction in any environment is a strong candidate for design. This should help open up new research avenues for developmental biology which is exactly what new theories should do. # Basic Types of Life Next time you are walking through a zoo, stop and think about what makes some animals different and others similar. For instance, if you are looking out over a large pond, you may see different species of ducks, geese, and swans. While they do appear different in some respects, there are also very tantalizing similarities. However, if there are also some flamingos or sea gulls in the crowd of aquatic birds, you would not put them in the same category as ducks and geese. They seem different. Evolutionists, of course, would see sufficient similarities: they are birds, after all, with wings, feathers, and beaks. So evolutionists would say they all evolved from a common ancestor. Ducks and geese are more similar to each other than they are to flamingos so the ancestor of ducks and geese is more recent than the ancestor of ducks, geese, and flamingos. But since intelligent design is calling into question many evidences and predictions of naturalistic evolution, it is reasonable to assume that all animals are not related back in time through a common ancestor. Perhaps all birds did not evolve from a single source. Maybe there are many different ancestors for the many groups of birds and other animals. Well, how would you know? How could you recognize groups of animals that do derive from a common ancestor and those that have arisen independently? Siegfried Scherer makes an attempt in his chapter titled, "Basic Types of Life." {18} Dr. Scherer is a professor of microbial ecology and director of the Institute of Microbiology at the Technical University of Munich and has published numerous papers in international peer-reviewed journals. Scherer proposes that there is another unit of taxonomic classification that can be overlaid on current taxonomy, the idea of basic types. {19} A basic type is a group of organisms or species that are capable hybridizing. These hybrids don't necessarily have to fertile themselves. Simply producing a coherent functioning organism from sperm and eggs of different species sufficient. <a>{20} Numerous successful attempts to hybridize different species of ducks, swans, and geese have convinced Scherer that they belong to a single basic type. This would mean that all 148 species are descended from a single common ancestor. $\{21\}$ The distinct differences mentioned earlier, between ducks and flamingos, would result from them being of different basic types. This observation leads Scherer to suggest that microevolution can now be defined as evolution within one basic type and macroevolution as evolution between basic types. The current evidence suggests that macroevolution is an undocumented process both from the fossil record and the biology of basic types. The plethora of species within a basic type like the ducks and geese also suggests that there was a great deal of variation built into each basic type to allow many distinct species to form through speciation. This prediction would be consistent with intelligent design but not evolution. There would be no reason for evolution to suggest that some species would have more variation than others would. This is corroborated by the observation that hybrids between two species frequently resemble a third species. This indicates that the genetic combination of the third species was hidden between the two species used to form the hybrid. {22} Scherer summarizes that evidence of individual ancestors for each basic type, fossil and biological gaps between basic types, similar or convergent characters in different basic types, and odd features, such as slightly differing genetic codes now found in a few organisms would also be evidence of design over evolution. The possibilities for further research are everywhere. Intelligent design becomes an extremely fruitful paradigm for research. #### **Notes** - 1. Henry F. Schaefer III, "Foreword," in *Mere Creation:* Science, Faith and Intelligent Design, William A. Dembski, Ed. (Downers Grove, Ill.: InterVarsity Press, 1998), 9. - 2. Ibid., 475. - 3. Ibid.,, 51-70. - 4. Ibid., 56. - 5. Ibid., 68. - 6. Ibid., 93-112. - 7. William A. Dembski, *The Design Inference: Eliminating Chance through Small Probabilities* (Cambridge: Cambridge University Press, 1998), 243. - 8. Dembski, Mere Creation, 93. - 9. Ibid., 94. - 10. Ibid., p. 113-147. - 11. Charles Thaxton, Walter Bradley and Roger Olsen, The Mystery of Life's Origin: Reassessing Current Theories (Dallas: Lewis and Stanley, 1984), 228. - 12. Mere Creation, 118-119. - 13. Ibid., 120. - 14. Ibid., 136-137. - 15. Mere Creation, 148-174. - 16. Eric Davidson, quoted in Mere Creation, 155. - 17. Ibid. - 18. Ibid., 195-211. - 19. Scherer does at least mention a competing idea, baramin, initially proposed by creationist Frank Marsh (Fundamental Biology, 1940, Lincoln Neb., n.p., Variation and Fixity in Nature, Mountain View, Calif.: Pacific Press) and further explicated by Kurt Wise (K. Wise, Baraminology: "A Young Earth Creation Biosystematic Method, in Proceedings of the Second International Conference on Creationism, R.E. Walsh and C.L. Brooks, eds. (Creation Science Fellowship, Pittsburgh, PA, 1990, Vol. 2, 345-360 and K. Wise, "Practical Baraminology," Creation Ex Nihilo Technical Journal, 1991, 6(2): 122-137). Scherer chooses not to mention another attempt in fleshing out this concept, the prototype, proposed by Lane P. Lester and Raymond G. Bohlin in *The Natural Limits to Biological Change* (Dallas: Probe Books, 1984), 161-172. - 20. Mere Creation, 197-199. - 21. Ibid., 200. - 22. Ibid., 203-204. - © 2000 Probe Ministries # Putting the Brakes on Human Genetic Engineering Dr. Michael Gleghorn argues that a biblical view of man should both inform and limit how reproductive technology and genetic engineering are applied to humanity. ## Are We Speeding toward a Brave New World? With ongoing advances in reproductive technology and genetic engineering, man's ability to make himself what he pleases is increasingly within reach. For example, in a 1996 Nature editorial it was stated, "the growing power of molecular genetics confronts us with future prospects of being able to change the nature of our species." {1} This raises serious ethical concerns. The power to change human nature says nothing at all about whether we ought to change it. How might we use such unprecedented power? Both Aldous Huxley and C. S. Lewis made disturbing predictions about man's possible future. Both explored what might happen if technologies like genetic engineering and psychological conditioning were unwisely applied to mankind. In Huxley's Brave New World children are no longer born to mothers and fathers (words considered disgusting and taboo); rather, they are "grown" in government owned "hatcheries." {2} Human freedom is virtually non-existent because each person is genetically engineered and psychologically conditioned to fulfill a particular social role. Society is structured into five classes. On top are the Alphas, society's elite. They are the intellectuals, educators, and government officials. At bottom are the Epsilons. They handle society's most menial tasks. In the middle are the Betas, Gammas, and Deltas, each having responsibilities appropriate to their class. In *The Abolition of Man*, C. S. Lewis argues that man's final conquest of nature may be his conquest of *human* nature. Lewis calls those who develop and gain such power *conditioners*. They can make humanity whatever they please. But what will it "please" them to make? Neither Huxley nor Lewis seem optimistic. Consider, for instance, what could happen if the man-makers of the future abandon belief in objective moral values—the doctrine that some things are really right and others really wrong. Would they make humanity "better"? The idea of "better" implies a standard of comparison that is either absolute or relative. But these man-makers reject an absolute standard of right and wrong. For such moral relativists then, a claim that honesty is good and lying is evil means nearly the same as a claim that hot chocolate is good but coffee is disgusting! Claims about good and evil are merely matters of personal taste or preference, nothing more. But what if there really are objective moral values? If so, such human conditioners could only make us better by accident, for they have rejected the very standard by which genuine improvement could ever be measured! And apart from this objective moral standard, "better" means only what they themselves happen to like. In contrast to such moral relativism, the Bible teaches that objective moral values are real. It points to the moral perfection of God as the absolute standard against which all human moral actions should be measured. Therefore, if we let a biblical view of man and morality inform how we choose to apply genetic engineering, we may be able to embrace the benefits and avoid the pitfalls of this powerful new technology. ### This Present Darkness Aldous Huxley and C. S. Lewis feared that if we misapply technologies like genetic engineering to ourselves we might soon become an endangered species! I share their concerns. Although I am *not* opposed to research and development in this area, I do think it should be constrained by a biblical view of man. Unfortunately, many researchers regard this view as little more than an antiquated myth. The biblical view of man has been rejected, or worse, entirely ignored. That such researchers should feel little incentive for placing biblical constraints on their work is therefore hardly surprising. A good example of this mindset can be found in Lee Silver's 1997 book, Remaking Eden: Cloning and Beyond in a Brave New World. He endorses Huxley's prediction about the power man will gain over reproduction. [3] But while Huxley and Lewis thought the state would use such power to promote its own agenda, Silver believes parents will use it to enhance the lives of their children. He thinks it's inconsistent to allow parents to provide their children with the best home environment, the best health care, the best educational opportunities and cultural experiences, but not the best genes. [4] He predicts that if the technology to change or enhance genes becomes available, no one will be able to stop parents from using it. {5} Since the amount of money to be made by such services would be staggering, "the global marketplace will reign supreme." {6} So how close is the day when parents might request a genetic upgrade for their children? Well, judge for yourself. The successful development of in vitro fertilization in 1978 not only allowed scientists to cure a certain type of infertility, it also gave them access to the embryo. In principle, this makes it possible "to observe and modify . . . its genetic material before a pregnancy is initiated." [7] Although such genetic modification has not yet taken place, it is now "possible to screen thousands of different genes within individual embryos" to see how such potential children might differ from one another. [8] Still, genetic *screening* is not genetic *engineering*. No genes are added or changed. {9} It simply allows parents to choose from the selection of embryos generated by this procedure. But there is a problem: it's currently legal to destroy the embryos that aren't chosen! {10} And this constitutes a serious infringement upon the rights of the unborn. Furthermore, Silver predicts that "genetic engineering of human embryos" will become feasible by the middle of this century. {11} While such remarks may sound alarming, we must remember that it's not the technology itself, but its *misapplication* that's the problem. ## What Might the Future Hold? One of the worst consequences of contemporary reproductive technology is the creation, and subsequent destruction, of numerous human embryos. Since 1997, genetic screening has made it "possible to screen thousands of different genes within individual embryos" to see how such potential children might differ from one another. {12} This information allows prospective parents to choose the one embryo among many which they believe will make the best child. Unfortunately, the remaining embryos are simply destroyed! If such technology is not constrained by a biblical view of man, this new form of legalized eugenics may be only the beginning. In light of such advancing technologies, what might the future hold? The future envisioned by Lee Silver in Remaking Edenis both fascinating and disturbing. He speculates that by the year 2350 two very distinct classes of people may exist: the Naturals and the Gene-Enriched or GenRich. Naturals are people like you and me, born by natural methods and not genetically enriched. The GenRich, who may account for roughly ten percent of the American population, are distinguished from Naturals in that they "all carry synthetic genes . . . that were created in the laboratory." {13} Silver believes that over time the genetic distance between Naturals and the GenRich will become ever greater. Eventually all aspects of the government, economy, media, entertainment, and education will controlled by the GenRich. {14} "In contrast, Naturals [will] work as low-paid service providers or as laborers," and their children will only be taught the skills needed to do the jobs available to their class. {15} If this social structure strikes you as loosely reminiscent of Aldous Huxley's *Brave New World* you're not alone. In fact, Silver subtitled his book, *Cloning and Beyond in a Brave New World*. But while Silver believes wealthy parents will use genetic engineering to enhance the lives of their children, Huxley thought such power would be controlled by the state. And here's where things get tricky. Silver predicts that society will be "controlled by . . . the GenRich." {16} They will be the sole governing class and the sole controllers of all sophisticated technology, including genetic engineering. But then what can prevent the GenRich from passing laws that permit engineering the Naturals to be a class of servants? Would not the more powerful, but less numerous, GenRich want to prevent the Naturals from entertaining revolutionary ideas? And might they not do this through genetic engineering and psychological conditioning? Have we not returned to something like Huxley's *Brave New World*? How might we avoid such a future? The biblical view of man provides an answer to this question. #### The Biblical Doctrine of Man In his book *Remaking Eden*, Lee Silver anticipates a future in which we can genetically alter human nature. He predicts that "genetic engineering of human embryos" will become feasible by the middle of this century. {17} Suppose he is right about this. Does it follow that we *ought* to genetically engineer humans simply because we *can*? How we answer this question will largely depend on our view of man. Exactly what are we, anyway? Are we merely matter which, through a long, undirected evolutionary process, has finally become self- conscious? Or are we something more? The Bible declares that both men and women were created in the image of God. {18} This doctrine forms the basis for the Christian belief in both the dignity of man and the sanctity of human life. Even after man's fall into sin the image of God, though marred, was not completely lost. {19} Thus in Genesis 9:6 we read, "Whoever sheds man's blood, by man his blood shall be shed, for in the image of God He made man." When God instituted capital punishment for murder, it was because He had created man in His image. But this verse not only affirms that man bears the image of God, it also implies that human life is sacred and imposes a severe penalty for the unjustified taking of such a life. It also suggests that man is subject to an absolute moral law which finds its source in God. You might say it indicates that all men "are endowed by their Creator with certain unalienable rights," chief of which is the right to life! The biblical doctrine of man needs to be brought into ethical discussions of reproductive technology and genetic engineering. Because man bears God's image, certain boundaries should not be crossed. For example, scientific evidence indicates that human life begins at conception. Therefore, destroying human embryos clearly violates their "unalienable" right to life. Furthermore, any attempt to genetically alter man's unique nature as a rational, emotional, volitional, moral agent *could* be viewed as an attack on the image of God in man. {20} We must be careful how we choose to apply such technologies—especially to ourselves! # Science within the Limits of Biblical Morality Alone C. S. Lewis compared man's attempt to conquer human nature to "the magician's bargain: give up our soul, get power in return." {21} But once we take the final step of reducing humanity "to the level of mere Nature . . . the being who stood to gain and the being who has been sacrificed are one and the same." {22} Lewis referred to this final step as the abolition of man. By this he did not mean the abolition of man's physical being. Rather, he was concerned potentially detrimental changes to that unique, immaterial component of human nature. Although I have doubts about whether we could actually change this aspect of human nature, I do object to any attempt by man to alter it through genetic engineering. Since God based capital punishment for murder on the fact that man was made in His image, it seems that any attempt to genetically alter human nature, fallen though it is, may likewise be morally offensive. {23} Still, the solution is not to abandon scientific research. Rather, we must simply keep it within proper moral boundaries. To make this clear, let's consider an example of a morally acceptable application of genetic engineering which also offers great potential benefit to humanity. There has recently been some talk of possible new AIDS vaccines. One of these, a brainchild of Robert Gallo's institute, makes use of the salmonella bacteria responsible for typhoid. The bacteria are genetically altered to be less infectious and to carry portions of HIV DNA into human intestinal cells. Alex Dominguez writes, "The infected intestinal cells are . . . hijacked by the HIV and produce a part of the HIV virus, which is not harmful but causes an immune response. Researchers hope that will allow the body to fight off an attack by the real HIV virus." {24} Although at this time the vaccine is still being developed, it provides an example of how genetic engineering might be used in both a morally acceptable and humanly beneficial way. But why is this a "morally acceptable" example? Briefly, unlike the scenarios imagined by Aldous Huxley and C. S. Lewis, man's unique identity as a rational moral agent made in the image of God is not in any way changed or compromised. Using genetically altered bacteria as a potential vaccine against HIV does not seek to alter human nature any more than a vaccine against rabies does. Confining scientific research within the limits of an objective, biblical morality thus precludes neither scientific advancement nor human benefit. Rather, it recognizes the value of science without devaluing those who it is chiefly intended to serve! But disregarding such moral standards could potentially lead us into the brave new worlds imagined by both Huxley and Lewis. We must therefore hold these principles in tension and encourage scientific research within the limits of biblical morality alone. #### **Notes** - 1. Cited in Lee M. Silver, Remaking Eden: Cloning and Beyond in a Brave New World (New York: Avon Books, 1997), 10. - 2. Aldous Huxley, *Brave New World* (New York: Harper and Row, Publishers, 1969), 1-4. - 3. Silver, Remaking Eden, 9. - 4. Ibid., 236. - 5. Ibid., 236-37. - 6. Ibid., 11. - 7. Ibid., 68. - 8. Ibid., 203. - 9. Ibid., 129. - 10. Public Opinion Sought on Embryo Research, Religious Rights Watch: A Publication of Christian Coalition of America, volume 11, number 1, January 2000. - 11. Silver, Remaking Eden, 233. - 12. Ibid. - 13. Ibid., 4. - 14. Ibid., 6, 242. - 15. Ibid., 6. - 16. Ibid. - 17. Ibid., 233. - 18. Genesis 1:27. - 19. James 3:9. - 20. A biblical understanding of human nature includes both material and immaterial components. We are not told all the particulars about how these components are related to one another, but clearly each can influence the other. In other words, genetic alterations to the human body could also affect the human mind and personality, essential aspects of human nature which, in my opinion, cannot be reduced to purely physical processes. See footnote 23 for further discussion. - 21. C. S. Lewis, *The Abolition of Man* (New York: Macmillan Publishing Company, 1955), 83. - 22. Thid. - 23. The Divine image is neither limited to, nor even primarily concerned with, man's physical being. Rather, this image concerns who, or what, man is essentially. And this, I think, is where an immaterial aspect of human nature must be introduced. That is, man's peculiar nature as a rational, emotional, volitional, moral agent with a special capacity for both forming and enjoying relationships with others (including God) includes both material and immaterial components. Although human nature is now fallen and infected with sin, it still bears the imprint of God's image (Gen. 9:6; Jas. 3:9). Thus, I view any attempt to genetically alter human nature (especially its *immaterial* aspect) as morally objectionable because first, man bears the image of God; and second, although human nature is certainly in need of change, this is hardly an appropriate task for fallen humanity. After all, our real need is not just to be made *different*, but to be made new (2 Cor. 5:17). And this *new creation* is strictly the work of God—not man (Eph. 2:10; 4:24). 24. Alex Dominguez, "AIDS Vaccine to be Tested in Uganda," Associated Press, 20 May 2000. ©2000 Probe Ministries ### Genetic Engineering — A Christian Scientist's Perspective Dr. Ray Bohlin examines the rapidly moving world of genetic engineering from a Christian worldview perspective. He explains that most genetic engineering attempts to make more efficient changes similar to those previously done through selective breeding and other conventional techniques. However, those working in the field need to be aware of the ethical and religious issues that arise in this area of science. ### What Is Genetic Engineering? Our culture teeters on the edge of a steep and dangerous precipice. New technologies will soon allow us to change, radically and permanently, the world in which we live. Indeed, we will hold in our hands the capability of directly and purposefully changing who we are as human beings. The technology I am speaking of is genetic engineering. {1} Ethical and technical questions swirl around discussions of genetic engineering like the wall clouds of the eye of a hurricane. Many in society seem to be bracing themselves for the disappearance of the calm of the eye and the coming of the full force of a powerful and destructive combination of new plants and animals unleashed on an unsuspecting environment, with new and improved humans designed to succeed. Before your alarm buttons go on overload, let me say that I hope to lend a reassuring voice with a dose of sober realism. Genetic technology will undoubtedly unleash great power to change our world forever, but should it, and will it? In this article I want to explore just a few of the technical and ethical questions we face as a society. The time to discuss these issues is now, while we still have time to think without simply reacting. The phrase genetic engineering, unfortunately, often conjures up images of macabre experiments resulting in Frankenstein-like monsters and the cold-hearted use of genetic information to create new social classes depending on our genes, as in the 1997 film Gattaca. {2} However, genetic engineering can simply be defined as the manipulation or alteration of the genetic structure of a single cell or organism. Sometimes the manipulation of an organism's genome, the totality of all its genes, can simply refer to the project of identifying its complete DNA sequence in order to gain information for future study and potential alteration. The Human Genome Project is therefore, in a sense, a form of genetic engineering because the human genome must be broken up and manipulated in order to gain the desired information. Ordinarily, genetic engineering refers to the direct addition, deletion, or intentional mutation of an organism's DNA sequence to produce a desired effect. Knockout experiments in mice seek to determine the effects of eliminating a particular gene from the mouse genome. Recombinant DNA experiments usually take a gene found in one organism and place the gene into another organism. These animals can be of the same or different species. Sometimes researchers will simply change the DNA sequence in a gene to study what effect the specific change has on the gene or its protein product. All of these alterations fall under the umbrella of genetic engineering. In this broad definition, genetic engineering is neither good nor evil. The nature of the experiments themselves will determine if they are moral or immoral. ### Why Are There Genetic Illnesses? The initial thrust of genetic research is the treatment and potential cure of genetic illnesses. Therefore, we must explore why genetic illnesses occur at all. "Why questions" within science usually occur on two levels and are notoriously difficult. The first level and usually the easier of the two are the scientific. The "why" is best changed to "how." For our purposes this means, How do genetic illnesses arise? The second, more difficult question asks on a moral basis, Why do genetic illnesses occur? The answer to the first question, How do genetic illnesses arise?, is simply, mutations. Mutations are mistakes in the DNA sequence. Sometimes a mutation is simply the substitution of one nucleotide for another. Mutations can also result from a piece of DNA being deleted. This may cause one or more codons to disappear. In cystic fibrosis (CF), codon 508 out of 1,480 is missing, causing one amino acid to be removed from the resulting protein. This causes the severe respiratory and digestive problems of CF patients that are usually lethal before their 30th birthday. So far, genes for more than 1,200 human disorders have been identified, which are found over all twenty-three pairs of human chromosomes. Some estimate that there may be as many as 3,000 to 4,000 human genetic disorders that are due to defects in a single gene. Most disorders, however, will be due to mutations in a host of genes. The moral question is perhaps not so difficult in its answer, but in our acceptance of the answer. Mutations exist as a result of the Fall. We know the serpent was cursed, Eve was cursed, and Adam was cursed (Gen. 3:14-19). But Romans 8:18-22 also tells us that all creation was subjected to futility, groans and suffers, and eagerly awaits the revealing of the sons of God so it may be set free from its slavery to corruption. This world is not as God intended. Asking why someone suffers from a genetic disease is no different than asking why someone was killed in a traffic accident when others walked away. We know our suffering is temporary. We know that God will somehow work it all out for good (Rom. 8:28). But in 2 Corinthians Paul tells us we suffer so we can comfort those who suffer after us (1:4), so other sufferers will know they are not alone (1:6), and, principally, we suffer so we will trust in God and not ourselves (1:9). Part of the Christian mission has always been to alleviate suffering where possible. While Jesus' miracles clearly were part of fulfilled prophecy, they were also about relief from suffering. Genetic engineering, while possessing a power that can be used for evil, which we will discuss, also at least has the potential to relieve the suffering from, if not even cure, genetic disease. # Could Changing Genetic Material Produce a Dangerous Superbug? One concern that many people have about genetic engineering is the possibility of unintentionally creating a superbug or a damaging plant or animal whose destructive nature is only discovered after the fact. After all, our knowledge of the workings of genes and proteins is still growing. We hear constantly how complex everything is. What makes us think we can tinker with this incredible biological reservoir of information without making some incredible blunder from which there is no turning back? When genetic engineering in bacteria was first discovered and introduced (Recombinant DNA technology), many scientists had this very fear. This was partially the reason for the self-imposed moratorium and four levels of containment in the early 1970s. But geneticists and molecular biologists found that dangerous, unintentional consequences were virtually nonexistent. Enforcement of the guidelines eventually relaxed and soon became outdated and ignored. What this means is that researchers were quite convinced that transferring DNA of known sequence and function into bacterial chromosomes and plasmids did not result in unforeseen consequences. The procedure became routine and straightforward. This does not mean that someone, somewhere, won't use biotechnology to produce a superbug intentionally. Certainly this technology can be used to produce even more powerful and resistant agents of biological warfare. Some even speculated that HIV (human immunodeficiency virus), the virus that causes AIDS, was intentionally produced. Though this hypothesis has been successfully refuted, the prospect remains that DNA recombinant technology has opened up a new field that can be used for evil. However, we must be clear that this is not the fault of the technology itself. It is entirely human to shrink with fear away from things that we don't understand. The first predictable reaction of tribal societies when faced with modern technology was to cower in fear. Something dreadful was about to descend upon them. Usually this didn't happen and, with some education and familiarity, fear dissipated. But only human agents alone can make evil choices. Fire will heat our homes and cook our food, but it can also kill indiscriminately in the hands of an arsonist. But fire itself is not evil. What should concern us more than the advent of biotechnology is the growing popularity of a totally secular and naturalistic worldview. Naturalism contends that humans are just complicated animals. The end result of this assumption is that ethics becomes an exercise in simply determining what works, not what is right. Biotechnology is powerful, indeed, but we cannot put the genie back in the bottle. Therefore we must engage the discussion as to how this technology can be used to cure disease and not become another snare to degrade and dehumanize people's lives. ## Are We Playing God by Creating Organisms That Never Existed Before? Unfortunately, the concept of playing God means different things to different people. {3} For some it may have nothing to do with God at all. They are simply expressing awe and wonder at the power that humans can wield over nature. For some Christians, however, the notion of playing God carries a pietistic view of God's realm of activity versus that of the human race. In this context, playing God means performing tasks that are reserved for God and God alone. If this is what genetic technology does, then the concerns about playing God are justified. But what is often being reflected in this perspective is that God acts where we are ignorant and it should stay that way. What is really at stake is fear, fear of what we may learn, fear of what new responsibility this new knowledge will put on our shoulders, and fear that this new knowledge will be used to harm us and not for the common good. The point was made that technology itself is not evil. Any technology can be used to further God's purposes or hinder them. People make those decisions, not technology. By the very fact that we are called to be stewards of God's creation (Gen. 1:26-28), we need to expand our knowledge of what God has made in order to better rule over His creation. Part of being made in God's image is our creativity. In this sense we "play God" by imitating Him. Our works of art, buildings, management of natural parks, and care for the poor, sick, and disadvantaged all imitate God for the good of His creation. But we are still creating new creatures that did not exist before. Isn't God the only Creator in that sense? We seldom realize that we are hard-pressed to find in nature today the ancestors of nearly all the plants and animals we use for food or service. Our current varieties of corn, wheat, flowers, cattle, dogs, horses, etc., bear little resemblance to the original stock in nature. That is because we have selected and manipulated them over the millennia for our own purposes. We have already created animals and plants that never existed before. Genetic technology has greatly increased the specificity and power of our abilities, but the nature of what we can do is the same as before. If we are to play God in the sense of imitating Him as we apply the truth of being created in His image and in exercising our appointment as stewards over all He has made, then we need to do so with humility and compassion. Our creative abilities should be used to enhance the condition of men and women as we struggle in a fallen world. Genetic technologies can and should be used to help alleviate or even cure the effects of genetic disease. # Is It Wrong to Combine Genes from Different Species? Have you ever wondered if we should be transferring genes from one species to another at all? Does this in itself violate some ethical principle? One gene does not define a species. Bacteria are composed of thousands of genes and it is estimated that humans possess as many as 100,000 genes. Therefore, transferring one gene from one organism to another does not create a hybrid in the traditional sense. Genes, remember, are composed of DNA. DNA is a molecule; it is not living in and of itself. If the idea of adding something foreign to an organism is troublesome, just realize that we do this all the time when we take antibiotics, over the counter pain medications, and other synthetic medications. Our bodies would never come across most of these substances in nature. What is different is that with genetic engineering, we have added something to a cell or organism that will change the composition of that cell or organism, possibly for as long as it lives, and is potentially passed on to future generations. It is reasonable to ask if we have the wisdom even to try to make these kinds of changes. No doubt, genetic technology provides a power never before possessed by human beings: to design intentionally or create a new variety of organism by altering its genetic structure. Once again, the issues are, Which genes are actually being transferred? and, For what purpose? These questions, asked case by case, should rule our choices, not the inherent legitimacy of genetic engineering itself. Creating crops internally resistant to disease, particularly to help developing countries better feed their people, is a goal worthy of God's image-bearers. However, intentionally manipulating the gene of a known pathogenic and deadly bacterium with the expressed intent of creating a biological weapon that is untreatable and incurable is a hideous evil. Kerby Anderson also warns that we need to consider the extent that genetic manipulation may cross over barriers God instituted in the created kinds. [4] If God felt it important to create boundaries of reproduction that his creatures were to stay within, we ought not cross over them ourselves (Gen. 1:11, 12, 21, 24, 25). It is certainly possible for genetically modified organisms created for agricultural and medical purposes to develop in ways not planned or foreseen. Therefore, it is necessary that proper and extensive tests be performed to assure, as much as possible, that no unnecessary harm will come to the environment or to humans. As vague as this prescription is, it only serves to reinforce the necessity of further education on the part of everyone to ensure that this powerful technology is used responsibly. We simply cannot afford to be ignorant of genetic issues and technologies and expect to contribute to the necessary discussion that lies ahead. #### **Notes** - 1. An excellent resource for Christians on this topic is Genetic Engineering: A Christian Response, Timothy J. Demy and Gary P. Stewart, eds. (Grand Rapids, MI: Kregel Publications, 1999) - 2. Gattaca, a film by Andrew Niccol, A Jersey Films production, distributed by Columbia Pictures, 1997. - 3. Allen D. Verhey, "Playing God," in *Genetic Ethics: Do the Ends Justify the Genes?* (Grand Rapids, MI: Eerdmans Publ. Co., 1997), 60-74. - 4. J. Kerby Anderson, "The Ethics of Genetic Engineering and Artificial Reproduction," in *Genetic Engineering: A Christian Response*, Timothy J. Demy and Gary P. Stewart. #### ©2000 Probe Ministries